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Abstract

Using large—scale data analysis to assess life history and behavioural traits: the case of the reintroduced
White stork Ciconia ciconia population in the Netherlands.— The White stork Ciconia ciconia has been the
object of several successful reintroduction programmes in the last decades. As a consequence, populations
have been monitored over large spatial scales. Despite these intense efforts, very few reliable estimates of life
history traits are available for this species. Such general knowledge however constitutes a prerequisite for
investigating the consequences of conservation measures. Using the large-scale and long—term ringing and
resighting data set of White storks in the Netherlands, we investigated the variation of survival and resighting
rates with age, time and previous individual resighting history, and in a second step supplementary feeding,
using capture—recapture models. Providing food did not seem to affect survival directly, but may have an
indirect effect via the alteration of migratory behaviour. Large—scale population monitoring is important in
obtaining precise and reliable estimates of life history traits and assessing the consequences of conservation
measures on these traits, which will prove useful for managers to take adequate measures in future
conservation strategies.

Key words: Age and time effects on survival, Capture—resighting models, Migrating probability, Population
dynamics, Supplementary feeding, Trap—dependence.

Resumen

Empleo de andlisis de datos a gran escala para evaluar rasgos de historia vital y de comportamiento: el caso de
la poblacién de ciguefias blancas Ciconia ciconia reintroducidas en los Paises Bajos.— Durante las Ultimas
décadas, la cigliefia blanca Ciconia ciconia ha sido objeto de diversos y satisfactorios programas de reintroduccion,
lo que ha permitido controlar poblaciones a grandes escalas espaciales. Pese a la intensidad de tales esfuerzos, se
dispone de muy pocas estimaciones fiables acerca de los rasgos de la historia vital de esta especie. No obstante,
estos conocimientos generales constituyen un requisito previo para investigar las consecuencias de las medidas de
conservacion. El empleo de datos de reavistaje y de anillamiento a largo plazo y a gran escala de las ciguefias
blancas de los Paises Bajos nos ha permitido investigar la variacién en las tasas de supervivencia y de reavistaje
segun la edad, el tiempo y la historia previa de reavistajes individuales. Asimismo, en una segunda fase, hemos
analizado los efectos de la alimentacion suplementaria a partir de modelos de captura—recaptura. Parece que la
provisiéon de alimentos no incidié directamente en la supervivencia, pero es posible que tuviera un efecto indirecto
como consecuencia de la alteracion del comportamiento migratorio. El control de la poblaciéon a gran escala es
fundamental para obtener estimaciones precisas y fiables de rasgos de historia vital, asi como para evaluar las
consecuencias de las medidas de conservacion de dichos rasgos, que resultaran de especial utilidad para los
gestores a la hora de emprender iniciativas apropiadas con respecto a las estrategias de conservacion futuras.

Palabras clave: Efectos del tiempo y de la edad en la supervivencia, Modelos de captura—reavistaje,
Probabilidad de migracién, Dinamica poblacional, Alimentacién suplementaria, Dependencia de las trampas.
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Introduction

Habitat degradation and loss due to human activi-
ties has led to increased extinction risks especially
for rare or highly specialised species and species
using several habitat types at different times of the
year, such as migratory species (e.g. Senra & Alés,
1992). Conservation biology aims at helping man-
agers to (1) assess the status of populations and
identify the risk factors these populations are sub-
ject to, (2) decide which conservation measures are
optimal to restore or protect endangered populations,
and (3) assess the effect of such measures in a
feed—back process allowing efficient measures to
be taken in further conservation phases (Lebreton
& Clobert, 1991; Caswell, 2001). In the last dec-
ades, many conservation actions have been under-
taken, but for practical reasons, conservation pro-
grammes are often limited in space and time.

A conservation programme is often considered
successful when the target population has been
restored to at least the level before the decline
within the duration of the programme, i.e. a short—
term, numerical response. However, long—term
sustainability of restored populations may not be
met (Schaub et al., 2004). Conservation measures
may affect population dynamics in many ways by
acting on different life history or behavioural traits,
and may durably change population composition
(e.g. proportion of non-breeding individuals), af-
fecting population processes such as sexual selec-
tion and intraspecific competition. A precise as-
sessment of the success of conservation actions is
an important step requiring the identification of
traits affected by conservation measures (Sarrazin
& Barbault, 1996; Caswell, 2001). Such assess-
ments, however, are still scarce (Schaub et al.,
2004). In particular, difficulties arise from the usu-
ally small size of the populations concerned, often
preventing the computation of reliable estimates
with limited confidence intervals. Large—scale, long—
term population monitoring is critically needed to
assess the impact of conservation actions, but is
rarely compatible with financial and technical sup-
port limitations.

The conservation of the White stork Ciconia
ciconia in Europe is one example of a large spatial
scale conservation action. White stork populations
strongly declined all over Europe after 1945, and
became extinct or nearly extinct in many Western
European countries (Bairlein, 1991). Increased
mortality, due to (i) starvation on the wintering
grounds, and (ii) increase of risk of collision with
power lines and electrocution along the migration
route, has been identified as one of the causes of
population decline (Barbraud et al., 1999). Between
1950 and 1970, conservation actions were imple-
mented at a regional or national level in several
countries (Bairlein, 1991; see e.g. Schaub et al.,
2004). Consequently, White stork populations have
been monitored over large spatial and temporal
scales, with intense efforts of ringing nestlings and
identifying breeders and wintering birds (see Senra

& Alés, 1992; Tortosa et al., 1995). In the Nether-
lands, an intensive reintroduction programme was
initiated in 1969, consisting in (i) a captive breeding
programme, with the release of juveniles produced
by captive pairs (until 1995), and (ii) providing nest
sites (poles) and food at the release stations for
non-captive, independent individuals, both during
the breeding season and winter. This programme
resulted in restoring the White stork population in
the Netherlands up to its level before 1945 (396
breeding pairs in 2000).

An assessment of the consequences of this pro-
gramme in terms of population dynamics and life
history traits is now required to allow adequate
further conservation measures to be taken. In par-
ticular, providing food could have altered life history
traits directly and/or indirectly. Direct effects could
include increased clutch size, brood size and fledg-
ling number and body condition as well as in-
creased juvenile and adult body condition before
migration and survival (Brittingham & Temple, 1988;
Hornfeldt et al., 2000; Sasvari & Hegyi, 2001; Tortosa
et al., 2002; Tortosa et al., 2003). Indirect effects
could include individual behavioural changes
(Bairlein, 1991), most importantly concerning for-
aging and migratory habits. Such changes might
consist of alteration of migration route (Fiedler,
1998; Berthold et al., 2001) or wintering areas
(Tortosa et al., 1995); or partial loss of the migra-
tory habit, especially with food being provided all
year round. If resident birds escape major sources
of mortality linked to migration (Tortosa et al.,
1995; Schaub & Pradel, 2004; Schaub et al., 2004),
supplementary feeding could indirectly influence
survival. Assessing the influence on survival rate of
food provided at the stations, and investigating its
mechanisms, thus appears of prime importance to
assess the success of the reintroduction programme
and predict future population dynamics under dif-
ferent conservation measures, and thus eventually
identify further measures that are needed to keep
the population size at a healthy level.

In long-lived species such as the White stork,
adult survival is a key life history trait for population
dynamics, and thus constitutes a preferential target
for conservation measures (Lebreton, 1978; Stearns,
1992; Schaub et al., 2004). We thus focused on
survival rate, and took advantage of the high ring-
ing and resighting efforts throughout the Nether-
lands to perform a survival analysis at a large
spatial scale. We used capture—recapture method-
ology to identify the factors affecting survival prob-
ability (internal factors: age, previous individual
history; and environmental factors: year, food avail-
ability), and obtain reliable estimates of this life
history trait according to these factors. We discuss
here the technical aspects of these analyses based
on long-term, large—scale data sets, and provide
elements of discussion for the influence of supple-
mentary feeding on life history traits. The biological
aspects will be developed and discussed in detail
elsewhere. Precise estimates of life history traits
are needed to build up integrated demographic
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population models allowing the assessment of the
consequences of variation in life history traits on
population dynamics (Caswell, 2001; Schaub &
Pradel, 2004), and thus the investigation of short—
and long—-term population dynamics and the as-
sessment of extinction risk under different conser-
vation scenarios. Such integrated models consti-
tute powerful tools to help in making optimal con-
servation decisions.

Material and methods

Species, data collection and selection for analyses

The White stork is a long—lived migratory species
breeding throughout Europe. Data on ringing and
live resightings of White storks in the Netherlands
have been gathered and monitored by Dutch ring-
ers. Each year, volunteers followed active nests of
White storks, and wherever possible, nestlings were
given individually numbered metal rings that can be
read with a telescope, and parents were identified
when ringed. Resightings of all other adults during
the breeding season were also collected, though it
is difficult to establish with certainty their breeding
status.

Survival analyses were restricted to birds ringed
as nestlings within the Netherlands between 1980
and 1999, using live resightings during the breed-
ing season (April to July) for years 1981 to 2000,
within the Netherlands only (less than 5% of
resightings of Dutch-ringed storks during the breed-
ing season are made outside the Netherlands). All
individuals manipulated in any way were excluded
from the analyses, because such manipulations
may have long—term influences on survival (Sarrazin
et al., 1994). We obtained 3,682 records of birds
ringed as nestlings or fledglings between April and
July, from 1980 to 1999. Among these birds, a total
of 763 individuals have been resighted later as
adults during the breeding season within the Neth-
erlands, with a total of more than 5,700 resightings
from 1981 to 2000.

Effects considered on survival and resighting probability

Age, time and cohort effects

Age, time and cohort effects, which have previously
been shown to influence survival rate (Kanyamibwa
et al., 1990; Kanyamibwa et al., 1993; Barbraud et
al., 1999), were included in the analyses. Here, a
full age effect was considered, i.e. 21 age classes
were defined in the starting models. Cohort effects
can arise from long—term effects during adulthood
of developmental conditions shared by individuals
born in the same year (Lindstrom, 1999; Reid et al.,
2003). A cohort effect could be tested only after
removal of the age x time interaction if not signifi-
cant. Conversely, no sex effect was considered
because too few individuals could be sexed (no
sexual dimorphism or sex differences in parental

care in this species). However, survival rate has
previously been found not to differ among sexes in
various populations of the White stork (Kanyamibwa
et al., 1993; Barbraud et al., 1999), although these
studies were based on small sample sizes. The
effects retained were then simplified by grouping a
posteriori years, cohorts and age classes of similar
survival and resighting estimates, and modelling
age patterns with different relationships between
age and survival (linear, quadratic, etc.).

Supplementary feeding

To assess the effect of providing food at the release
stations, the distance from the nest to the nearest
station was considered. During the nestling phase,
foraging visits by parents occur mainly within 2 km
from the nest (about 75% of the feeding visits by a
pair), less frequently from 2 to 5 km from the nest
(about 25%), and only exceptionally farther than
5 km from the nest (Dallinga & Schoenmakers,
1984; Carrascal et al., 1990; Alonso et al., 1991;
see also Johst et al., 2001). Thus, the shorter the
distance from the nest to the nearest station, the
higher the potential influence of feeding on survival.
Therefore, two different classes of distance relative
to the location of the nest from the nearest release
station were defined: class 1 (close): breeding adults
whose nest is closer than 2 km from the nearest
station (feeding in majority at the station); class 2
(distant): adults whose nests are farther than 2 km
(rarely feeding at the station). These distance classes
should reflect the percentage of feeding visits made
by the parents at the stations.

Assessment of survival and resighting probabilities:
capture—recapture analyses

Resighting effort during the breeding season is
mainly linked to breeding activities. Because (i) a
given percentage of breeding birds are missed each
year, and (ii) not all birds may engage in breeding
activities each year (especially in the first years of
their life), resighting probability is likely to be smaller
than 1. In that case, the use of capture—recapture
methodology is required to get unbiased estimates
of survival probability (Lebreton et al., 1992; Clobert,
1995; Martin et al., 1995). Furthermore, the class
of distance to the nearest release station of an
individual is susceptible to change over the course
of the individual’s lifetime. In this case, multi—state
capture—recapture models, allowing the assessment
of state—specific survival and resighting rates and
transition probabilities between states (here, the
distance classes), may be appropriate (Nichols et
al., 1994; Nichols & Kendall, 1995).

Goodness—of—fit (GOF)

Goodness—offit tests were performed to ensure that
the starting model (i.e. before selection) fits the data
(Burnham et al., 1987; Lebreton et al., 1992). We
used a modified version of Release tests (Burnham
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et al.,, 1987) to test for trap—dependence effects
(Pradel, 1993; see below). The time effect model
(CJS model) was tested cohort by cohort because a
strong effect of age is expected in this long-lived
species with delayed maturity (see Cézilly et al.,
1996). The results of these cohort—by—cohort tests
were then summed over all cohorts to compute the
global tests for the whole data set.

Accounting for trap—dependence

Individuals resighted at time t may not have the
same probability to be resighted at time t+1 as
individuals not resighted at time t (Burnham et al.,
1987; Cam & Monnat, 2000), an effect called short—
term (or immediate) "trap—dependence" (Pradel,
1993). Data were prepared for analysis of trap—
dependence as described in Pradel (1993), using U-
Care software (Choquet et al., 2003). Capture—
resighting histories were split after each capture to
allow distinction between resighting rate immedi-
ately after a resighting and after no resighting. Trap—
dependence was then modelled by an artificial age—
dependence structure, with two age classes (one
year after the previous resighting vs. later; Pradel,
1993; see also Pugesek et al., 1995). To account for
real age—dependence simultaneously, individuals
were re—injected in the data after splitting their cap-
ture—resighting history into groups corresponding to
their actual age. Parameters were then equalised
among these groups according to year and individu-
al's age and cohort (Appendix).

Model selection and notation

Model selection was based on the Akaike’s Infor-
mation Criterion corrected for effective sample
size (AICc; Lebreton et al., 1992; Burnham et al.,
1995). The models selected were those whose
AlICc value differed by less than two units from the
lowest AICc model. Deviances and AlCc values of
the different models were calculated using soft-
ware MARK (White & Burnham, 1999). All effects
could not be included at once in the starting model
because the number of parameters required would
exceed the upper limits of our available computer
memory when using MARK (~1,000). Therefore,
analyses were performed in two steps: (i) first, the
effects of time, age, trap—dependence and cohort
on survival and resighting rates were investigated
and, when appropriate, simplified a posteriori on
the basis of parameter estimates (see above); (ii)
second, this simplified model, where the number
of parameters had been reduced, was used as a
starting model for assessing the influence of the
variables linked to conservation measures (here
supplementary feeding).

Model notation has been extended from the
notation defined in Lebreton et al. (1992) and in
Nichols et al. (1994) for multi-state models. S_,,
(survival probability) is the probability that a bird
of age a at time t-1 survives until time t (an
additive effect of time and age on survival was

noted S,,). P, (resighting probability) is the prob-
ability that a bird of age a is recaptured at time t,
given that it is alive and present at time t. Sub-
scripts ¢ and m denote a cohort effect and an
immediate trap—dependence effect on resighting
rate respectively. In multi-state models, state—
specific survival and resighting probabilities are
noted S, and P, . respectively. T, ... (transi-
tion probability) is the probability that a bird of age
a in state s at time t—1 is in state r at time t, given
that the individual has survived from time t-1 to
time t.

Results

Simplification of time, age and cohort effects

Goodness—of-fit tests

To increase the sensitivity of the global Release
test (see Horak & Lebreton, 1998), only tests for
cohorts with sufficient data (i.e. at least 2 ex-
pected individuals per cell) were included. Good-
ness—of-fit of model S, P, was strongly re-
jected (y? = 308.59, df = 64, p < 0.0001). This was
due to a very high 2 CT test value (32 = 267.64,
df =40, p <0.0001). Thus, resighting probability
depended on previous resighting history of the
individuals (trap—dependence; Burnham et al.,
1987; Pradel, 1993). Here, birds resighted at time
t were approximately twice as likely to be resighted
again at time t+1 than birds not resighted at time
t, i.e. a strong "trap—happiness" effect (Pradel,
1993; fig. 1). The other components of the GOF
tests were not significant, except test 3 Sm, but
this was due to a single cohort out of 14, i.e. close
to the 1/20 expected by chance. When excluding
this cohort, we obtained a non-significant
3SR +3Sm+2Cm test (y2=34.16, df =23,
p =0.063; ¢ = 1.49). Thus trap—dependence was
the major source of lack of fit. The model S,
P fitted the data, and was used as the starting

axtxm
model for the model selection procedure.

Model selection

Resighting probability models were simplified first
to keep greater power for survival modelling
(Lebreton et al., 1992). Additive effects of age,
time, trap—dependence and cohort on resighting
probability were retained in the final model (ta-
ble 1). Similarly, an additive effect of age and
time on survival probability was retained, i.e.
temporal variation of survival probability was par-
allel among age classes. No cohort effect could
be detected on survival probability (table 1). Ad-
ditional attempts to reduce resighting probability
with the simplified survival model were unsuc-
cessful (table 1). The final model retained at this
stage was thus S_,, P, .....n With a total of 97
parameters. No other model could compete with
this model, as differences in AICc values were
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Fig. 1. Variation in survival and resighting probabilities with age: survival (A) and resighting (B)
probability estimates (+ SE) for year 1994 (medium survival and resighting rate—year, see fig. 2) are
shown as examples (birds aged up to 14 years because only birds born after 1980 were included).
Survival and resighting probabilities increase gradually with age up to 8 years, when they stabilise.
This increase is modelled appropriately by a quadratic relationship for survival (A) and an inverse
quadratic relationship for resighting (B), on a logit scale (see table 2). Because age and time effects
were additive (see table 1), the age—specific patterns of variation in other years are parallel to those
shown in the examples here. In B, trap—dependence on resighting rate is also illustrated: black
squares, birds not resighted in the previous year; open squares, birds resighted in the previous year.

(Survival and resighting estimates were obtained from model S_, ., P

a+t’ att+m )

Fig. 1. Variacién segun la edad en las probabilidades de supervivencia y de reavistaje: estimaciones
de probabilidad (+ EE) de supervivencia (A) y de reavistaje (B) para el afio 1994 (supervivencia media
y tasa de reavistaje—afio, fig. 2) a modo de ejemplos (aves de mas de 14 afios de edad, dado que s6lo
se incluyeron aves nacidas después de 1980). Las probabilidades de supervivencia y de reavistaje
aumentan gradualmente con la edad, hasta alcanzar los 8 afios, que es cuando se estabilizan. Este
aumento se modela adecuadamente mediante una relacion cuadratica para la supervivencia (A) y una
relacion cuadratica inversa para el reavistaje (B), en una escala logit (ver tabla 2). Dado que los
efectos de la edad y del tiempo fueron aditivos (tabla 1), las pautas de variaciéon por edades en otros
afios son analogas a las indicadas en los ejemplos que se detallan aqui. En B, también se ilustra la
dependencia de las trampas en la tasa de reavistaje: cuadros negros, aves no reavistadas el afio
anterior; cuadros blancos, aves reavistadas el afio anterior. (Las estimaciones de supervivencia y de

reavistaje se obtuvieron a partir del modelo S, P,.....)

always much larger than 2 (table 1). When only A posteriori characterisation of the effects retained
breeding birds were included in the analysis (i.e.

excluding birds of unknown breeding status), the To simplify further the model selected, effects of age,
same final model was selected (results not de- time and cohort on survival and resighting probabili-
tailed here). ties were characterised explicitly (table 2). Both sur-
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Table 1. Steps of the simplification of the starting model S, , P, to model S_., P_,. ... Model
notation according to Lebreton et al. (1992): Np. Number of identifiable parameters; T. Time; A.
Age; TD. Trap—dependence; *Indicates the model selected in each step. The deviance value given
here is the relative deviance from the saturated model (deviance of the saturated model: 3,332.87).
Tabla 1. Fases de la simplificacion del modelo de inicio S_,, P, al modelo S_,, P_,...... Las
anotaciones sobre el modelo se basan en Lebreton et al. (1992): Np. NUumero de parametros
identificables; T. Tiempo; A. Edad; TD. Dependencia de las trampas; * Indica el modelo seleccionado
en cada fase. El valor de desviacion indicado corresponde a la desviacién relativa con respecto al
modelo saturado (desviacién del modelo saturado: 3.332,87).

Doligez et al.

Model Np Deviance AlCc Effect tested
First step, simplifying resighting probability (effects on resighting probability)
S Pasixm 592 5,384.35 10,036.11 Starting model
S o Plevti 401 5,634.91 9,829.52 Additive effect of TD
*Saxt' Pastem 249 5,921.36 9,774.67 Additive effects of A, T and TD
St Pavm 249 6,021.42 9,874.73 No T effect
S Pom 248 7,003.65 10,854.78 No A effect
S P 400 5,942.05 10,134.35 No TD
St Paim 231 6061.95 9,876.07 No T effect, additive A and TD effects
S Piim 230 7,072.13 10,884.08 No A effect, additive T and TD effects
St Past 248 6,251.79 10,102.91 No TD, additive effects of A and T
S A 230 6,433.52 10,245.48 A effect only
S P 229 7,177.83 10,987.61 T effect only
S P 212 7,416.03 11,189.07 TD effect only
S P 211 7,567.42 11,338.30 Constant resighting probability

Second step, simplifying survival probability (effects on survival probability)

S Pavem 249 5,921.36 9,774.67 Starting model

*Soetr Pavtem 78 6,087.32 9,578.34 Additive effects of A and T
S - 60 6,157.79 9,611.93 No T effect

St Pastsm 59 6,362.27 9,814.37 No A effect

S, P.iim 41 6,419.84 9,835.31 Constant survival probability

Third step, checking for effects on resighting probability (effects on resighting probability)

*Son Poeem 78 6,087.32 9,578.34 Starting model

Soin Pt 77 6,428.87 9,917.84 No TD

S.it Pavm 60 6,239.43 9,693.58 No T effect

S..0 Pm 59 7,217.07 10,669.17 No A effect

S..o Pa 59 6,622.48 10,074.59 No T effect nor TD

S, Py 58 7,334.87 10,784.93 No A effect nor TD

S..v Pm 41 7,577.01 10,992.48 No A nor T effects

S..o P. 40 7,763.45 11,176.88 Constant resighting probability

Fourth step, testing for cohort effect (effects on survival S and resighting probability P)

S.iver Pasemec 116 6,016.51 9,586.15 Additive cohort effect on S and P
S, itrer Pasrtem 97 6,068.91 9,599.11 Additive cohort effect on S

*S_in Poiemic 97 6,037.40 9,567.60 Additive cohort effect on P

S P 78 6,087.32 9,578.34 No cohort effect

a+t’

att+m




Animal Biodiversity and Conservation 27.1 (2004)

Table 2. A posteriori characterisation of age, time and cohort effects on survival and resighting
probabilities in the previously selected model S,,,, P,..,... Np. Number of identifiable parameters.
Simplification of the effects: A2. Quadratic relationship with age on a logit scale (survival probability);
1/A2. Inverse quadratic relationship with age on a logit scale (resighting probability); t3. Separation
of survival probability in three time periods: 1981 to 1987, 1988 to 1995, and 1996 to 2000 (see
fig. 2A); t'3. Separation of resighting probability in three categories of years: low resighting
probability (1985 and 1987), high resighting probability (1992, 1995 and 1999), and medium
resighting probability (other years) (see fig. 2B); ¢3. Separation of resighting probability in three
types of cohort: low resighting rate—cohorts, high resighting rate—cohorts, and the 1982 cohort
(with a very high resighting rate, see text). (Deviance and AlCc values for the final simplified

model S P are given.)

A2(8)+t3’ 1/A2(8)+t'3+c3+m

Tabla 2. Caracterizacién a posteriori de los efectos de la edad, el tiempo y las cohortes en las
probabilidades de supervivencia y de reavistaje en el modelo previamente seleccionado S_,,, P_, . mc:
Np. Numero de parametros identificables. Simplificacion de los efectos: A2 Relacién cuadratica con la
edad en una escala logit (probabilidad de supervivencia); 1/A2. Relacién cuadratica inversa con la edad
en una escala logit (probabilidad de reavistaje); t3. Separacion de la probabilidad de supervivencia en
tres periodos de tiempo: de 1981 a 1987; de 1988 a 1995; y de 1996 a 2000 (fig. 2A); t'3. Separacion
de la probabilidad de reavistaje en tres categorias de afios: probabilidad de reavistaje baja (1985 y
1987), probabilidad de reavistaje alta (1992, 1995 y 1999), y probabilidad de reavistaje media (otros
afos) (fig. 2B); ¢3. Separacion de la probabilidad de reavistaje en tres tipos de cohortes: cohortes con
una tasa de reavistaje baja, cohortes con una tasa de reavistaje alta, y la cohorte de 1982 (con una
tasa de reavistaje muy elevada; ver el texto). Se indican los valores de desviacién y de AICc para el

modelo final simplificado Sy, g3 Pyjaxgyresrcasm:

Effect simplified Survival Resighting Deviance Np AlCc

Starting selected model S P orticem 6,037.40 97 9,567.60
Age effect on survival S pegyet R 6,057.79 80 9,552.92
Time effect on survival Sia P orticem 6,059.98 81 9,557.17
Age effect on resighting S Pine(g)stscem 6,050.49 79 9,543.57
Time effect on resighting S S — 6,053.34 81 9,550.53
Cohort effect on resighting S, _, P tecaem 6,052.99 80 9,548.12

Final simplified model SamuE P e 6,139.76 12 9,496.68
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vival and recapture probabilities increased with age
up to a plateau (fig. 1). Age—dependence could a
posteriori be modelled with a quadratic relationship
on a logit scale for survival probability, and with an
inverse quadratic relationship on a logit scale for
resighting probability (table 2). This difference indi-
cates that the increase of resighting probability with
age is steeper than the increase of survival prob-
ability. Both survival and resighting probabilities
reached a plateau at age 8 (stabilisation at age 6:
AlICc = 9,503.09; age 7: AICc =9,498.23; age 8:
AICc = 9,496.68; age 9: AlCc = 9,496.26; age 10:
AICc = 9,496.13).

Time—dependence of survival probability could be
modelled by considering three periods (1981 to 1987,
1988 to 1995, and 1996 to 2000; table 2, fig. 2A).
The first period corresponded to high survival rates
but low sample sizes, as reflected by large confi-
dence intervals. Survival decreased during the sec-
ond period, and again during the third one (fig. 2A).

The break in 1995-1996 corresponded to the end of
the captive breeding phase of the reintroduction. A
linear decline in survival probability over the 21
years of the period was tested and rejected, but
other ways of modelling survival probability could
also have been retained. In particular, time—depend-
ence of survival probability could most likely be
modelled parsimoniously using external meteoro-
logical variables, both during the breeding season
and the winter season (Kanyamibwa et al., 1993;
Barbraud et al., 1999). The separation in three time
periods performed here is not claimed to be the most
parsimonious nor best fitting the data. Resighting
probability was rather constant over the 20 years,
except in years 1985 and 1987 when it was particu-
larly low, and in years 1992, 1995, and 1999 when it
was particularly high (fig. 2B). Grouping years in
these three categories (low—, medium— and high—
resighting rates) appropriately modelled time-de-
pendence of resighting rate (table 2). Similarly, the
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cohort effect on resighting probability could be
modelled by considering three types of cohort: (i)
high resighting probability—cohorts (1980, 1985,
1987, 1988, 1990, and 1993 to 1999), (i) low
resighting probability—cohorts (1981, 1983, 1984,
1986, 1989, 1991, 1992), and (iii) the 1982 cohort,
with an exceptionally high resighting probability
(table 2). The origin of these differences between
cohorts in resighting probabilities is not clear.
This a posteriori characterisation of age, time
and cohort effects on survival and resighting
probabilities thus decreased the final number of
parameters to be estimated down to 12. The
final model for this first step was noted S

Pl/A2(8)+t’3+c3+m (table 2).

A2(8)+13’

Influence of distance to the nearest release station

75.0% of birds (2,760 out of 3,682) where ringed in
nests located less than 2 km away from the nearest
release station (distance class 1). This can be
explained by a breeding activity quasi—exclusively
located at the release stations during the first 8
years (until 1987), combined with high numbers of
nest poles provided for the breeding birds close to
the stations.

Assessing variable status: dynamic vs. fixed over
individuals’ lifetime

We first assessed whether the distance class
changed over time for a given individual in our data
set. 40.6% of resighted birds (264 out of 651)
changed class of distance either between hatching
and first breeding attempt and/or between several
breeding attempts. Thus, the influence of class of
distance to the nearest release station on survival
rate and resighting probability had to be investi-
gated using a multi-state approach.

Further simplifications of the starting model

Further simplifications of the starting model were
needed and made before investigating the influence
of the distance class. Because variation in survival
and resighting probabilities with age stabilised at
age 8, capture—recapture histories were still split to
account for trap—dependence, but after splitting, in-
dividuals were re—injected in a single group when
aged 8 years or more. This left us with eight age
groups instead of 21. Furthermore, the cohort effect
was eliminated from this multi-state analysis, be-
cause the number of parameters required to param-
eter the PIMs in MARK would otherwise again ex-
ceed the limit. Because the cohort effect was only
additive, we assumed that eliminating it should not
strongly affect model selection. With no cohort ef-
fect, 402 parameters were needed.

Survival and distance to the nearest release station

The starting model was S
T

(A2(8)+t3)xs’ P(l/A2(8)+t’3+m)xs’

agxsr With two states (close and distant, i.e. two

classes of distance), thus two transitions possible
from each state (i.e. one transition estimated per

state, Tclose to distant and Tdistant to close’ with Tclose to close =
1-T and T =

~ ' close to distant distant to distant — ' distant to close’"
Again, transition and resighting probabilities were

simplified first to keep greater power for survival
modelling. An additive effect of age, time and class
of distance was retained on transition probabilities
(table 3). Individuals were more likely to move and
breed closer to the stations than the reverse. Storks
were less likely to change class of distance with
increasing age, and this variation was successfully
modelled by an inverse relationship on a logit scale
(table 3). Finally, transitions were particularly low
(close to zero) in years 1984 and 1985, and particu-
larly high in year 1997. Separating years in these
three categories (low—, medium— and high—transi-
tion rates) appropriately modelled time—depend-
ence of transition rate (table 3). With this simplified
modelling of transition probability, an effect of class
of distance was retained on resighting probability,
in interaction with trap—dependence alone or trap—
dependence and age (table 3; effects not detailed
here). Finally, when simplifying survival probability,
the models with (i) no effect of the class of distance
and (ii) an additive effect of the class of distance to
age and time effects on survival competed, the
second being slightly less supported (AlCc differ-
ence between both models: 1.81; table 3). This
suggests that the class of distance only has at best
a slight direct effect on survival, survival rates
being lower for birds seen far from the stations
(class 2, distant) than birds seen close (class 1,
close) (results not detailed here).

Discussion

Our study was a first step in understanding the
consequences of conservation measures on the
White stork population biology and dynamics in the
Netherlands through the identification of the factors
responsible for the patterns of variation of survival
and resighting probabilities. We focused on sur-
vival probability as the major life—history trait deter-
mining population dynamics in this long-lived spe-
cies (Lebreton, 1978; Stearns, 1992; Schaub et al.,
2004). We discuss below advantages and technical
aspects of using large-scale data sets to test for
the effect of many factors (age, time, previous
history, etc) on survival and resighting probabilities.
The biological implications of these effects, and the
assessment of conservation measures (here, direct
and indirect influences of providing food on sur-
vival), need further investigation, and will be dis-
cussed elsewhere.

Estimates of survival rates with capture—
resighting analyses and their variation according to
different factors (age, density, meteorological vari-
ables) have previously been given for several Euro-
pean populations of White storks (Kanyamibwa et
al., 1990; Kanyamibwa et al., 1993; Barbraud et al.,
1999; Schaub et al., 2004). Except for the Swiss
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Fig. 2. Variation in survival and resighting probabilities with time. Third—year survival (A) and
resighting (B) probability estimates are shown as examples (years 1983 to 2000 because only
birds born after 1980 were included). For survival, three time periods were defined: 1981 to 1987
(high survival probabilities with high confidence intervals, black squares); 1988 to 1995 (medium
survival probabilities, open circles); and 1996 to 2000 (low survival probabilities, grey triangles)
(see text and table 2). For resighting, three categories of years were defined: low resighting rate
years (1985 and 1987, open circles); high resighting rate years (1992, 1995 and 1999, grey
triangles); and medium resighting rate years (other years, black squares) (see text and table 2).
Temporal variation of survival and resighting probabilities for other age—classes again parallel
those shown here because age and time effects were additive (see table 1). (Estimates were
obtained from model S_,, P,..,..-)

Fig. 2. Variacion segun el tiempo en las probabilidades de supervivencia y de reavistaje. La
supervivencia durante el tercer afio (A) y las estimaciones de probabilidad de reavistaje (B) se
indican a modo de ejemplo (de 1983 a 2000, dado que sélo se incluyeron aves nacidas
después de 1980). Para la supervivencia, se definieron tres periodos de tiempo: de 1981 a
1987 (probabilidades de supervivencia altas, con intervalos de confianza elevados, cuadros
negros); de 1988 a 1995 (probabilidades de supervivencia medias, circulos blancos); y de
1996 a 2000 (probabilidades de supervivencia bajas, triangulos grises) (ver texto y tabla 2).
Para el reavistaje, se definieron tres categorias de afios: afilos con una tasa de reavistaje baja
(1985 y 1987, circulos blancos); afios con una tasa de reavistaje alta (1992, 1995 y 1999,
triangulos grises); y afios con una tasa de reavistaje media (otros afos, cuadros negros) (ver
texto y tabla 2). La variacién temporal de las probabilidades de supervivencia y de reavistaje
para otras clases de edad es anéaloga, una vez mas, a las indicadas aqui, debido a que los
efectos de la edad y del tiempo fueron aditivos (ver tabla 1). (Las estimaciones se obtuvieron
a partir del modelo S_,,, P,,....)
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Table 3. Steps of the simplification of the multi-state model S, g 15ccr Piym)seasmps Ta@pexs 1€SHNG
for an effect of the class of distance to the nearest release station (state ss on survival and resighting
probabilities: Np. Number of identifiable parameters. * Indicates the model selected in each step.
When simplifying resighting and survival probabilities before a posteriori characterising transition

probability, the same models were selected for survival and resighting probabilities.

Tabla 3. Fases de la simplificacion del modelo multiestado SAZ(S)%)XS, (LAYB) 3+ m)xs? a(g)xtxs para
comprobar un efecto de la clase de distancia con respecto a la estacion de Ili)eracmn mas proxima
(estado s) sobre las probabilidades de supervivencia y de reavistaje: Np. Numero de parametros
identificables; * Indica los modelos seleccionados en cada fase. Cuando se simplificaron las probabilidades
de reavistaje y de supervivencia antes de llevar a cabo una probabilidad de transicién a posteriori
mediante técnicas de caracterizacion, se seleccionaron los mismos modelos para las probabilidades de
supervivencia y de reavistaje.

Model Np Deviance AlCc
First step, simplifying transition probability
Segexs Pamgstarmps Ta@rxs 284 5,318.16 9,390.9
Sgpaxs Pum@samps T a@xs 74 5,468.83 9,091.8
Sgms Pamgsrarmps Ta@ss 153 5,406.71 9,191.6
S Pumgsramps Tagss 55 5,500.93 9,085.0
Sgaxs Pamgsiarmps Ta@xs 67 5,471.78 9,080.4
Sinua)saxs Pngyirasmxst Va@ 152 5,469.43 9,255.3
Segyrapst Prumxgytsrmpst Ta@)xs 36 5,561.09 9,108.5
Sgexs’ Pum@stamps o 60 5,523.17 9,117.4
*Swgiaest Pam@rsimps: Tagsirs 48 5,508.73 9,078.5
S(A2(8)+t3)><s’ P(l/A2(8)+t’3+m)><s’ Taj8)+t 47 5‘589'25 9'157'0
Segyraps Prumxgtsrmps: Ta@yrs 29 5,565.61 9,096.8
Sgaxs Pum@seamps Tus 41 5,565.43 9,121.0
Sgpas Punepaimps Tag) 28 5,626.34 9,155.5
Sges Pumgsramps Tt 40 5,617.33 9,170.8
Seges Puneptsmps Ts 22 5,614.50 9,131.6
Sgaxs Pamgpzmps T, 21 5,667.53 9,182.6
Second step, a posteriori characterisation of transition probability
Sgexs Pmgtarmpst Ta@ss 48 5,508.73 9,078.5
Swegyaps Pumgarmps: Tagprars 31 5,522.37 9,057.6
Sgraps Pamgraimps: Tuages 42 5,509.81 9,067.4
*Smegraest Pumsgysrmpnst T1agtars 25 5,523.08 9,046.2
Third step, simplifying resighting probability
Segyaps’ Punagysaempst T ua@ptrass 25 5,523.08 9,046.2
S(A2(8)+t3)><s’ PllAz(S)xs+t’3><s+m’ TllA(8)+t”3+s 24 5’528'05 9’049'2
*Spgyriaies’ Pumgxsisimas Tua@ysss 23 5,524.34 9,043.4
Seeyaps’ Pusgpseaxsmxsr T 1a@)ass 24 5,523.46 9,044.6
S(A2(8)+t3)><s’ PlIA2(8)><5+t'3+m' Tl/A(8)+t”3+s 22 5‘529'35 9'046'4
Swegyraps Prngyraxsim Tua@tars 23 5,528.11 9,047.2
*Segraes’ Pumgtaimes Tuagyaes 22 5,524.66 9,041.7
S(A2(8)+t3)><s’ PlIA2(8)+t'3+m+s' Tl/A(8)+t”3+s 21 5‘529'39 9'044'5
S(A2(8)+t3)><s’ PllA2(8)+t‘3+m’ Tl/A(8)+t”3+s 20 5’547'03 9’060'1

Doligez et al.
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Table 3. (Cont.)

Model Np Deviance AlCc

Fourth step, simplifying survival probability
S(AZ(B)HS)XS’ Pl/A2(8)+t’3+m><s‘ Tl/A(8)+t”3+s 22 5’524'66 9‘041'7
SAZ(S)XS+I3’ Pl/A2(8)+I‘3+mxs’ TlIA(8)+t”3+s 20 5’525'76 9’038'8
Sp@piaxsr Pun@prasms Tuagprass 20 5,525.00 9,038.1
*SA2(8)+t3+s' PlIA2(8)+t'3+m><s' Tl/A(8)+t”3+s 18 5’525'91 9‘0349
*SA2(8)+13' Pl/A2(8)+t’3+m><s‘ Tl/A(8)+t”3+s 17 5’526'12 9‘0331
Sigyriaxs: Prssgpsizimss: Tua@tsrs 23 5,524.34 9,043.4
SA2(8)><S+13' Pl/AZ(B)Xs+t’3+m><s' TlIA(8)+t”3+s 21 5’525'40 9‘040'5
SA2(8)+t3><s' Pl/AZ(B)Xs+t’3+m><s' TlIA(8)+t”3+s 21 5’524'78 9‘0398
Sp@pisrsr Pum@sitasmsst T uagprass 19 5,525.64 9,036.7
*Spegpiz Prpgxsiarmest Tua@srass 18 5,525.88 9,034.9

population, which also used large samples (more
than 3,500 individual recovery histories over 28
years; Schaub et al., 2004), previous studies ob-
tained much smaller adult survival estimates (0.65
to 0.78), despite higher resighting rates (0.85 to
0.95). The difference in survival between these
studies and ours likely arises from the much smaller
sample sizes on which the former were based,
combined with differences in wintering conditions
between years 1970’s (droughts in Africa) and 1990’s
(increasing number of storks wintering in Spain), or
different conservation measures in different
populations. The large—scale and long—term moni-
toring of the White stork population in the Nether-
lands, in relation with the reintroduction programme,
allowed the gathering of a very large and high
quality resighting data set. Ringing and resighting
efforts have been high over the whole study period.
As a consequence, we were able to model fine
patterns of variation in survival and resighting prob-
abilities with age and time, detect small effects of
these factors and obtain precise estimates of these
parameters.

In particular, our study is probably one of the
first to include a full age— and trap—dependence
simultaneously (see Pugesek et al., 1995;
Frederiksen & Bregnballe, 2000). Age dependent
survival was modelled in previous studies using a
two—pseudo age class structure (first year after
initial resighting vs. later; Kanyamibwa et al., 1990),
which did not account for fine age variation in
survival rate, and probably also resulted in under-
estimated adult survival rates (see also Tavecchia
et al., 2001). A progressive increase of survival
prospects early in life, as found here, has been
shown in several long-lived species (Frederiksen &
Bregnballe, 2000; Tavecchia et al., 2001), thus
strongly encouraging complex modelling of age—

specific survival rate, using large data sets to pro-
vide sufficient power (see also Pugesek et al.,
1995; Harris et al., 1997). Such an increase might
be widespread among long-lived species, although
it has only rarely been detected because the age
structure modelled was too simple (Hafner et al.,
1998; Prévot-Julliard et al.,, 1998; Forero et al.,
2001; but see Bauchau et al., 1998).

However, the use of large data sets collected at
large spatial scales also imposes constraints and
limitations, because their analysis involves (i) a
large set of candidate models, and (ii) complex
models with many parameters, as the influence of
more factors are investigated. Here, we faced the
problem of the upper limit of the number of param-
eters based on our available computer memory
when using MARK (1,000). Because of this limit,
we had to adopt a strategy to simplify the models
investigated to reduce parameter number (see e.g.
Pugesek et al., 1995), and chose a two-step proce-
dure mixing a priori and a posteriori effects: (i)
simplifying age and time modelling of survival and
resighting probabilities, and (ii) using the a posteri-
ori simplified model in a multi-state model to inves-
tigate the effect of the class of distance. We could
not define a starting model including all effects of
interest simultaneously in MARK. Moreover, we
also reduced the number of models to be compared
by simplifying resighting (and transition) probability
before survival probability (i.e. we did not explore
the whole model space). While this approach renders
analyses tractable in MARK, it does not guaranty
that the best model is retained. A posteriori model-
ling should normally be used to create new hypoth-
eses to be tested with another data set, in an a
priori way. Here we mixed both approaches, which
decreases the strength of evidence for the selected
model. A theoretical assessment of the influence of
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different strategies used to simplify model selection
procedures on the model retained would be helpful
to ensure that results are robust. It may turn out
that, in the case of complex models on large data
sets, MARK may not be the appropriate capture—
recapture analysis software to perform model se-
lection.

The simplifying strategies could be based on a
priori knowledge of the species biology and results
of previous studies. For instance, a trap—happiness
when individuals are identified without physical cap-
ture, as for the White stork, may be due to higher
resighting probability of breeders compared to non—
breeders, associated with delayed maturity
(Lebreton, 1978; Kanyamibwa & Lebreton, 1992).
In this case, trap—dependence may be modelled
using two states, breeder and non-breeder, with
state—specific resighting probabilities. Here, such a
two—state approach again could not have been
performed using MARK because of our limits in
parameter numbers. However, Release tests on the
data set restricted to resighting histories after the
first resighting as a breeder indicated that trap—
happiness occurred within adults. Furthermore, trap—
happiness was retained when resightings of birds
of unknown status, probably mostly non—breeders,
were excluded from the data, a result differing from
other studies (Lebreton et al., 1992; Cézilly et al.,
1996). Thus, resighting heterogeneity was observed
among breeders. Trap—happiness may rather be
due to spatial heterogeneity in resighting effort
associated with high philopatry (Prévot-Julliard et
al., 1998). Birds may be expected to have a higher
resighting rate when breeding close to the stations
than far, because of time constraints in resighting
effort. Further analyses including geographical esti-
mates of resighting effort are required to investigate
this mechanism of trap—dependence.

Our detailed modelling of survival and resighting
probabilities allowed us to start investigating the
consequences of conservation measures, here sup-
plementary feeding, on these traits. Providing food
did not seem to strongly affect survival rate directly,
but may affect it indirectly (see Schaub & Pradel,
2004; Schaub et al., 2004). The influence of supple-
mentary feeding on the probability of migrating, and
survival differences between residents and migrants
is still in need of investigation. Eventually, a com-
plete understanding of the White stork population
dynamics in the Netherlands will also require the
detailed characterisation of recruitment (Clobert et
al., 1994; Pradel, 1996), reproductive success and
dispersal, and of their variation with age, time (Pradel
et al.,, 1997), breeding density (Barbraud et al.,
1999), and supplementary feeding (Moritzi et al.,
2001; Tortosa et al., 2002; Tryjanowski & Kuzniak,
2002). It will then become possible to build an
integrated population model, incorporating the esti-
mates obtained. Such a model would allow us to
understand the mechanisms of population dynamics
(see Thomson & Cotton, 2000) and thus to predict
the consequences of future conservation actions for
the White stork in the Netherlands.
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Appendix. Simultaneous investigation of age— and trap—dependence on resighting rate.

Apéndice. Investigacion simultanea de la dependencia de la edad y de la trampa sobre la tasa de
reavistaje.

The following capture—recapture history of an individual White stork during the period 1980-2000 is
taken as an example. The individual considered here was born in 1983, first resighted when three
years old (in 1986), and then resighted each year from 1987 to 1989, from 1991 to 1993, and in 1996
and 1997; it was not resighted again after 1997.

Capture-recapture history
000100111101110011000

Trap—dependence can be accounted for by splitting the capture—recapture history after each capture, and
considering the rest of the history as a new history. Using an artificial two—age structure for the
parametrisation of resighting probabilities then allows us to distinguish resighting probability one year
after a previous resighting from resighting probability later on (Pradel, 1993). To account for real age—
dependence, one needs to specify the age at which each "new" history starts. Here, we consider 21
years, thus 21 age classes for full age—dependence. When re—injecting the individual after splitting the
history, the age of the individual is specified by assigning it to an age group. The "— 1" values indicate
when a history has been split, so the individual is considered to be removed ("loss on capture™) from
the analysis at this point (Choquet et al., 2003).

Splitting the history and accounting for age at "release"”

000100100000000000000 -1 00 O 0O O O O O O OOO OO OO OOOO
000000110000000000000 O 0O0O-1 0 0O O O OO OOO OO OO OOOO
000000011000000000000 O 0O 0-1 0 0O O O OOOO OO OO OOOO
000000001100000000000 O 0O O 0-1 0 O O O O OO OO OO OOOO
000000000101000000000 O 0O O 0 0-1 0 0 O O OO OO OO OOOO
000000000001100000000 O 0O O 0 0O O O-12 0 0O OO OO OO OOOO
000000000000110000000 O 0O O 0 0O O O O-1 0 OO OO OO OOOO
000000000000010010000 O 0O O 0 O O O O O-1 00 OO OO OOOO
000000000000000011000 O 0O O 0 O O O OO OOO 10 OO OO0OOO

When parameterising resighting probabilities according to age, year and cohort, one then needs to set
equal the probabilities for individuals of the same age and cohort in the same year, except just after a
resighting (trap—dependence effect). In MARK, parameters are defined for each age group separately in
matrices called Parameter Index Matrices (PIM). The full structure (age, time and cohort effects) is
specified in the PIM of the first age group. Then, for each group i: (i) the parameters of the first i1
rows of the PIM are set equal to 0 (because no individual of age i can be found before year 1980+i, nor
belong to a cohort younger than 2000-i); (ii) the parameters of row j (j > i) are set equal to the 20—i+1
last parameters of row j—i+1 of the PIM of the first group; (iii) the first parameter of each row j (j > i) is
set different from the corresponding parameter of the PIM of the first group, i.e. introducing an artificial
two—age structure to account for trap—dependence.

The PIMs for individuals of groups 1, 2 and 4 are shown below as an example. Only the effects of
age and trap—dependence are considered (no cohort nor time effect).

First group
12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Second group (birds released after a resighting at age 2)

X X X X X X X X X X X X X X X X X X X X
21 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
22 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19

22 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

22 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

212 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fourth group (birds released after a resighting at age 4)

X X X X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X X X

23 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

23 5 6 7 8 910 11 12 13 14 15 16 17 18 19

23 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Parameters 21 and 23 here are set different from parameters 2 and 4 respectively to account for
trap—dependence, and X is set to 0.

In the analysis including class of distance as a state variable, a set of PIMs is defined for each
state.




