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Abstract
Testing the additive versus the compensatory hypothesis of mortality from ring recovery data using a random effects
model.— The interaction of an additional source of mortality with the underlying "natural" one strongly affects
population dynamics. We propose an alternative way to test between two forms of interaction, total additivity and
compensation. In contrast to existing approaches, only ring–recovery data where the cause of death of each
recovered individual is known are needed. Cause–specific mortality proportions are estimated based on a
multistate capture–recapture model. The hypotheses are tested by inspecting the correlation between the cause–
specific mortality proportions. A variance decomposition is performed to obtain a proper estimate of the true process
correlation. The estimation of the cause–specific mortality proportions is the most critical part of the approach. It
works well if at least one of the two mortality rates varies across time and the two recovery rates are constant across
time. We illustrate this methodology by a case study of White Storks Ciconia ciconia where we tested whether
mortality induced by power line collision is additive to other forms of mortality.

Key words: Additive mortality, Compensatory mortality, Ring recoveries, White stork, Variance components,
Power line collision.

Resumen
Estudio comparativo entre la hipótesis de la mortalidad aditiva y la hipótesis de la mortalidad compensatoria
mediante el empleo de un modelo de efectos aleatorios basado en datos de recuperación de anillas.— La
interacción de una fuente adicional de mortalidad con la fuente subyacente "natural" incide de forma considerable
en la dinámica poblacional. Proponemos un método alternativo para comprobar los dos tipos de interacción: la
aditividad total y la compensación. A diferencia de lo que sucede con los modelos empleados actualmente, en este
caso sólo se precisan datos de recuperación de anillas de cada uno de los individuos recuperados cuando se
conoce la causa que ha provocado su muerte. Los porcentajes de mortalidad inducida por una causa específica
se estiman a partir de un modelo de captura–recaptura multiestado. Las hipótesis se comprueban examinando la
correlación existente entre los porcentajes de mortalidad inducida por una causa específica. Posteriormente, se
efectúa una descomposición de varianza a fin de obtener una estimación apropiada de la verdadera correlación
del proceso. La estimación de los porcentajes de mortalidad provocada por una causa específica representa el
punto más crítico de este planteamiento. Funciona adecuadamente si por lo menos una de las dos tasas de
mortalidad varía con el tiempo y las dos tasas de recuperación se mantienen constantes en el tiempo. Para ilustrar
esta metodología, presentamos un estudio de la cigüeña blanca Ciconia ciconia, en el que verificamos si la
mortalidad inducida por colisiones con los tendidos eléctricos se suma a otras formas de mortalidad.

Palabras clave: Mortalidad aditiva, Mortalidad compensatoria, Recuperación de anillos, Cigüeña blanca,
Componentes de varianza, Colisión con tendidos eléctricos.
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viduals (Burnham & Anderson, 1976). However,
Lebreton (in press) showed by means of simple
calculations that the resulting compensation must
generally be weak even under strong density–de-
pendence or heterogeneity.

Deciding between additivity or compensation
based on empirical data has been proven to be
difficult (Williams et al., 2002; Lebreton, in press).
Anderson & Burnham (1976) and Burnham &
Anderson (1984) were the pioneers in formulating
these hypotheses and in establishing methods to
test them. Since then, there has been little effort to
refine the existing or to develop further methods.
The basic principle approach proposed by Anderson
& Burnham (1976) is to estimate the overall sur-
vival rate and the mortality rate induced by the
additional mortality cause (called kill rate), and
then to estimate the slope of survival against kill
rate while taking account of the sampling varia-
tion. The complete compensation hypothesis is
supported if this slope does not differ from 0. The
critical step in this approach is the estimation of
the kill rate. Because only recoveries of animals
that died from the particular mortality cause are
considered, an independent estimate of the recov-
ery rate (and crippling loss rate) is required to
work out the kill rate. Reward band experiments
can help to obtain these independent estimates
(Henny & Burnham, 1976; Nichols et al., 1991).
Another approach is to test whether overall sur-
vival rate is a function of the mortality intensity
due to the cause in question (e.g. harvest rate)
using an ultrastructural model (e.g. Smith &
Reynolds, 1992; Sedinger & Rexstad, 1994;
Gauthier et al., 2001). The complete compensa-
tion hypothesis is supported if overall survival is
not a function of the varying mortality intensity.
Both approaches need information independently
from the capture–recovery data. Because the in-
dependent variable is estimated with some sam-
pling variance (and even bias), the slope of the
regression line which serves to test the hypoth-
eses will be biased to some degree (Lebreton, in
press). Lebreton (in press) pointed out that the
potential bias or uncertainty in this information
tends to bias the additivity test towards the alter-
native hypothesis, i.e., compensation, which is
quite an undesirable property of a statistical test.
The case of seasonal compensation is addressed
by Boyce et al. (1999).

Here we attempt to develop an alternative ap-
proach for testing the total additivity hypothesis
which does not need additional independent infor-
mation. Rather, this approach uses knowledge
about the cause of death of each recovered, marked
animal. Schaub & Pradel (2004) showed recently
that it is possible to estimate separately the over-
all survival and the proportions of different mortal-
ity causes from capture–recovery data when the
cause of death of each recovered individual is
known. We use a different parameterisation of
their model to estimate directly two mortality rates
("natural" and "kill" rate). We develop a random

Introduction

Many animal populations are subjected to man–
induced sources of mortality. These include, e.g.,
harvesting and hunting, collisions with vehicles or
objects such as power lines, or contamination
with pesticides. All of this man–induced mortality
can be viewed as a form of population exploita-
tion. In the context of harvesting the exploitation
is direct and intentional, in other contexts it may
be indirect and unintentional. In any case, exploi-
tation is an additional source of mortality to which
the population is submitted. Determining the im-
pact of exploitation in the broad sense on the
dynamics of the population is a key question.
Examples of this question are the determination
of a harvesting rate which does not result in a
population crash (e.g. Nichols et al., 2001), as-
sessment of the long–term population persist-
ence when an additional mortality cause emerges
(e.g. Tavecchia et al., 2001), or the evaluation of
pest control strategies (e.g. Brooks & Lebreton,
2001). Central for the evaluation of all these
examples and in general is the knowledge of how
the additional mortality interacts with the natural
mortality.

Two extreme hypotheses about the interaction
between natural and an additional mortality rate
can be formulated: the totally additive and the
completely compensatory hypothesis (Anderson &
Burnham, 1976; Burnham & Anderson, 1984). The
totally additive hypothesis of mortality assumes
that deaths due to a specific mortality cause repre-
sent an additional component of mortality in the
population. Hence individuals that die due to this
mortality cause would, if this mortality cause
wouldn’t have existed, not have died during the
time interval considered. If this hypothesis is true,
the overall natural survival rate drops by the amount
of the additional mortality rate (fig 1). Under the
completely compensatory hypothesis of mortality,
deaths due to the additional mortality cause would
be compensated for by lowering the natural mor-
tality rate. Hence, individuals that die due to the
additional mortality cause would, if this mortality
cause wouldn’t have existed, have died because of
another reason within the time interval considered.
If this hypothesis is true, an increase of the addi-
tional mortality rate does not reduce the overall
survival rate (fig. 1). Complete compensation is
only possible when the additional mortality rate is
lower or equal to the overall mortality rate in the
absence of the additional mortality cause (Anderson
& Burnham, 1976; fig. 1). Between these two
extreme hypotheses any degree of partial compen-
sation is possible (fig. 1). Under partial compensa-
tion the overall survival rate decreases when ani-
mals are subjected to an additional mortality rate,
but the decrease is lower than the value of the
additional mortality rate.

Complete or partial compensation of mortality
can occur as a result of density–dependent mor-
tality or of heterogeneity in survival among indi-
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effects model, in order to estimate in a similar way
as Burnham & Anderson (1976) the correlation
between the two mortality rates which serves as a
test for the two opposing hypotheses. The additive
hypothesis is supported if the correlation does not
differ from zero. We illustrate our approach with a
case study of White Storks (Ciconia ciconia), where
we tested whether the mortality induced by power
line collisions is completely additive or compen-
sated for by other forms of mortality. Finally we
discuss advantages, drawbacks and perspectives
of this approach.

Methods

The proposed approach

The data needed for our approach are capture–
mark–recovery data where the cause of death of
each recovered individual is known. We then allo-
cate all individuals that died because of the mortal-
ity cause under consideration to cause A, all other
dead individuals to cause B. A multistate capture–
history is then constructed for each individual, in
which resightings, recoveries due to mortality cause
A and recoveries due to mortality cause B are
coded differently.

Over a defined time interval (usually one year)
an individual has three possible fates: it may sur-
vive with probability S, it may die because of cause
A with probability MA, or it may die because of
cause B with probability MB. Conditional on the
three fates the individual may be observed with
resighting probability p (probability to resight a
marked individual that is alive), with recovery prob-
ability rA (probability that an animal that has died
because of cause A is recovered and reported) and
with recovery probability rB (probability that an
animal that has died because of cause B is recov-
ered and reported), respectively. A three–states cap-
ture–recapture model serves to estimate the un-
known parameters. Written with a transition matrix
(departure states are written in rows, arriving states
in columns, states from top to down and from left to
right are "alive", "dead due to cause A" and "dead
due to cause B") and a vector of recapture prob-
abilities, the model is,

        (1),

where, subscript t of the matrix and the vector
denote time–dependence. In fact this model would
contain a fourth state "dead for at least one year",
but as it is absorbing and non–observable it is not
necessary to consider it explicitly (Lebreton et al.,
1999). An alternative notation of this model is
{MA(t), MB(t), p(t), rA(t), rB(t)}.

Originally, Schaub & Pradel (2004) used another
parameterisation of this model. Instead of directly
estimating MA and MB, they estimated the propor-

tion (�) of animals that have died due to cause A
among all animals that have died in the specified
time interval, and the overall survival rate (S).
These parametrisaitons are equivalent, since linked
by: MA = (1 – S) � and MB = (1 – S)(1 – �).

Schaub & Pradel (2004) pointed out that the
indentifiablity of their model depends on the model
structure. Using formal calculus software (Catch-
pole & Morgan, 1997; Catchpole et al., 2002;
Gimenez et al., 2003), we tested the intrinsic
identifiablity of several models with different com-
plexity regarding time–dependence of the param-
eters. The models were intrinsically identifiable
(i.e., not parameter redundant) when at least one
of the two mortality rates is time–dependent and
the two recovery rates are constant across time,
or when only one mortality rate (e.g. MA) and the
recovery rate associated with the other cause of
death (rB) are time–dependent (table 1). As the
model with time–constant mortality and recovery
rates {MA(.), MB(.), p(t), rA(.), rB(.)}, is not identi-
fiable, parameter estimation using identifiable
models can nevertheless be negatively affected.

Fig. 1. Simple illustration of the complete
compensatory, partial compensatory and
totally additive hypotheses of mortality. S0 is
the survival that would be observed in the
absence of the additional mortality cause (kill
rate = 0). Complete compensation can occur
maximally up to the threshold given by c =
1 – S0: Cc. Complete compensation; Pc. Partial
compensation; Ta. Total additivity.

Fig. 1. Ilustración simple de las hipótesis de
mortalidad compensatoria total, compensatoria
parcial y aditiva total. S0 es la supervivencia
que se observaría ante la ausencia de la causa
de mortalidad adicional (tasa de mortalidad =
0). La compensación completa sólo puede dar-
se como máximo hasta el umbral indicado por c
= 1 – S0: Cc. Compensación total; Pc. Com-
pensación parcial; Ta. Aditividad total.
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This is because the non–identifiable model {MA(.),
MB(.), p(t), rA(.), rB(.)} is a nested submodel of
identifiable models. An inadequate performance
can be made apparent by unrealistic estimates of
some parameters and very large or zero standard
errors. Catchpole et al. (2001) provide a thorough
examination of the same problem found in a different
model.

For testing the additivity hypothesis we esti-
mated the correlation between the two mortality
rates. If the mortality rate due to cause A were
totally additive to the mortality rate due to cause
B, the two mortality rates would vary independ-
ently from each other over time, and hence their
correlation would be zero. However, as mortality
events of the two types compete over a non
negligible time period, the numbers at risk of
mortality over time are affected by both sources
of mortality. As a consequence, even under the
assumption of additivity, the proportions dying
from the two causes of mortality will be slightly
negatively correlated (see appendix). However
this correlation will be small in absolute value
(Burnham & Anderson, 1984; Lebreton, in press)
and the null hypothesis of a correlation equal to 0
remains a good approximation. In contrast, if the
mortality rate due to cause A would be compen-
sated by decreasing mortality rate due to cause
B, their correlation would be negative (–1, if
compensation is complete). The correlation of
the two estimated mortality rates cannot be used
directly for this purpose, because it is affected by
sampling correlation to an unknown degree. In-
stead we have to estimate and decompose the
different variance components, i.e. the true proc-
ess variance and the sampling variance.

The covariation over time (indexed by i) between
MA and MB is examined using a random effect
model according to:

MA(i) =  �A + UA(i) + V(i)    (2)

MB(i) =  �B + UB(i) + V(i)    (3)

where UA(i), UB(i) and V(i) are independent and
normally distributed random variables with respec-
tive variances, independent of i, "A

2, "B
2, and "2.

The true process correlation between MA and MB
can then be calculated as

    (4)

The null (additive) hypothesis H0
 corr (MA, MB) = 0

translates then into H0  var (V) = 0. It can thus be
tested simply by a Wald test once estimates of the
variance component "2 and of its standard error
have been obtained.

In practice, the components of variance have to
be estimated based on estimates           and         
obtained from the multistate capture–recapture
model. We used the following general procedure:

Let � be a vector of parameters in a probabilistic
model for which maximum likelihood estimates     
are available together with an estimate  of their
covariance matrix �. The maximum likelihood es-
timates are normally distributed and asymptoti-
cally it follows that                                . When
the number of parameters has been reduced by
some model selection, this approximation will be
quite valid (Besbeas et al., 2002), even consider-
ing  as known without uncertainty. Then let us
assume that � is modeled as mixed models with
fixed effects described by a design matrix X and
components of variance being part of a covariance
matrix W, as:

(5).

It follows that:

(6).

The likelihood of this overall mixed model can
then be easily maximized to find MLEs of � and of
the variance components in W. Maximum likelihood
is among the standard methods for fitting mixed
models and appears as a good competitor to more
sophisticated methods such as REML (Searle et
al., 1992, ch. 6). Otis & White (2004) showed that
variance components are estimated accurately from
band recovery data. Obviously, a Bayesian model
could also be used.

This simple two–step maximum likelihood ap-
proach was used for estimating the components of
variance in the model with the two sources of
mortality and to test for var(V) = 0, i.e., for additivity.

Application to data: the White Stork and power line
collisions

To illustrate this approach, we consider capture–
recovery data of White Storks from Switzerland. A
significant source of mortality in White Storks is
collision with overhead powerlines (Riegel & Winkel,
1971; Schaub & Pradel, 2004). Evaluation of how
strongly the population dynamics of Swiss White
Storks are affected by power line accidents is of
conservation relevance. Reconstruction of power
lines is an efficient conservation option if mortality
due to power lines would be additive, but less so,
if power line mortality would be compensated for
by other forms of mortality.

From 1984 to 1999 2912 nestlings have been
ringed, of which 61 were later resighted at the
breeding sites, 195 were recovered as due to
power line collision and 221 as due to other
sources of mortality (table 2). According to a
priori knowledge we constructed our candidate
models in the following way. The resighting effort
was low and highly variable between the study
years, therefore we always kept the resighting
probability (p) time–dependent. White Storks start
to breed at age 3 to 4 years before this age they
may return to the breeding colonies without breed-
ing or they may stay elsewhere. To reduce het-
erogeneity, we only considered resightings of
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storks older than 4 years and fixed the resighting
probabilities of the younger storks to zero. The
two mortality rates (ME. Electrocution mortality;
MN. Natural mortality) were always considered to
be age– (two age classes, the first refer to the
first year of life, the second to all later years) and
time–dependent. Time–dependence was required
to test the hypotheses. An age structure was
enforced because we know that overall mortality
strongly differs between young and adult storks
(Lebreton, 1978; Barbraud et al., 1999; Doligez
et al., 2004). The recovery rate (rE) associated
with electrocuted White Storks is unlikely to be
age–dependent, but may be constant or time–
dependent. In contrast, the recovery rate (rN)
associated with all other mortality causes may be
age–dependent, as it compromises different
sources of mortality to which young and adult
storks may be differently sensitive. In addition
this recovery rate may vary over time or may be
constant. In summary, we used eight candidate
models, that differ only in the complexity of the
two recovery rates. We tested the intrinsic identi-
fiability of all candidate models using formal cal-
culus (Gimenez at al., 2003).

Compared to Schaub & Pradel (2004), who made
a similar analysis of the data, we only considered
storks ringed as nestlings and did not include natal
dispersal in the model. This made the model sim-

pler. Since Schaub & Pradel (2004) did not find
significant temporal variation in natal dispersal, its
omission is unlikely to have altered the estimated
temporal pattern of the two mortality rates.

A goodness–of–fit test for multistate models in-
cluding nonobservable states doesn’t currently ex-
ist (Pradel et al., 2003). In order to have some
indication of the goodness–of–fit we used the fol-
lowing ad hoc approach. We only considered the
recovery data but did not distinguish between dif-
ferent causes of death. According to Brownie et al.
(1985) we compared the observed number of dead
storks for each cohort and year to the expected
value under model {S(t), r(t)}. This model fitted the
data well ((2

32 = 37.11, P = 0.25). Compared to the
model we would like to test, it makes very strong
assumptions, e.g., it does not allow for different
recovery rates due to the mortality causes or for
age–dependence of the recovery rates. We argue
that because the simple model fitted the data, the
more complicated model which accounts for more
heterogeneity would also fit. This goodness–of–fit
test does not consider the resighted storks. How-
ever the bulk of the data are the recoveries and the
few resightings are therefore unlikely to signifi-
cantly induce lack of fit. We used program M–
SURGE (Choquet et al., 2003) to fit the different
models and to estimate the parameters and their
associated variance–covariance matrix.

Table 1. Test results of intrinsic identifiability of constant and time–dependent mortality causes
models obtained by computer algebra methods (Gimenez et al., 2003). The parameters in the model
are MA (mortality rate due to cause A), MB (mortality rate due not cause B), p (resighting rate), rA
(recovery rate due to cause A), and rB (recovery rate due to cause B). t denotes time–dependence,
and k is the number of capture occasions.

Tabla 1. Resultados de la identificabilidad intrínseca de los modelos de causas de mortalidad
constantes y dependientes del tiempo obtenidos mediante el empleo de métodos algebraicos asistidos
por ordenador (Giménez et al., 2003). Los parámetros utilizados en el modelo son MA (tasa de
mortalidad inducida por la causa A), MB (tasa de mortalidad no inducida por la causa B), p (tasa de
reavistaje), rA (tasa de recuperación debida a la causa A), y rB (tasa de recuperación debida a la causa
B). t indica la dependencia del tiempo y k es el número de casos de captura.

      Separately identifiable        Number of
Model             parameters estimated quantities

MA(t), MB(t), p(t), rA(t), rB(t) p2,...,pk–1 5k–10

MA(t), MB(t), p(t), rA(t), rB(.) p2,...,pk–1 4k–5

MA(t), MB(t), p(t), rA(.), rB(.) All 3k–1

MA(t), MB(.), p(t), rA(.), rB(.) All 2k+1

MA(.), MB(.), p(t), rA(.), rB(.) p2,...,pk k+2

MA(.), MB(.), p(t), rA(.), rB(t) p2,...,pk 2k

MA(.), MB(.), p(t), rA(t), rB(t) p2,...,pk 3k–2

MA(t), MB(.), p(t), rA(t), rB(t) p2,...,pk–1 4k–5

MA(t), MB(.), p(t), rA(.), rB(t) All 3k–1
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Encounter period

 1985 1986          1987 1988         1989 1990       1991

Y NR        E  N R       E  N  R    E  N  R     E  N  R     E  N R       E  N  R     E N R

1984 Rj = 101  9  6 0 0 0 0 0 2   0 0 1  1 0  0  0 0 0 0 0  1  0

Ra = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1985 Rj = 100 7 5 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0

Ra = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1986 Rj = 80 6 6 0 0 1 0 0 0 0 1 0 0 1 1 0

Ra = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1987 Rj = 123 8 8 0 1 0 0 0 1 0 0 1 3

Ra = 0 0 0 0 0 0 0 0 0 0 0 0 0

1988 Rj = 162 9 12 0 1 0 0 0 2 0

Ra = 1 0 0 0 0 0 0 0 0 0

1989 Rj = 140 19 1 0 0 0 0

Ra = 1 0 0 1 0 0 0

1990 Rj = 229 16 7 0

Ra = 2 0 0 0

1991 Rj = 151

Ra = 3

1992 Rj = 265

Ra = 9

1993 Rj = 211

Ra = 16

1994 Rj = 131

Ra = 5

1995 Rj = 117

Ra = 16

1996 Rj = 300

Ra = 14

1997 Rj = 334

Ra = 6

1998 Rj = 337

Ra = 3

1999 Rj = 131

Ra = 9

Table 2. Capture–recovery data for White Storks from Switzerland summarized in m–array format.
White Storks can be encountered dead due to power line collision (E), encountered dead due to a
natural cause (N), or can be resighted alive (R). All White Storks are initially released as juveniles
(Rj), but when resighted, they are "released" again as adult (Ra): Y. Year; NR. Number of releases.

Tabla 2. Datos de captura–recuperación correspondientes a la cigüeña blanca de Suiza, resumidos en
formato de matriz m. Las cigüeñas blancas se pueden encontrar muertas por haber colisionado con
tendidos eléctricos (E), por causas naturales (N), o se pueden reavistar vivas (R). En un principio,
todas las cigüeñas blancas se liberan siendo jóvenes (Rj), pero cuando son reavistadas, se "liberan"
de nuevo como adultas (Ra): Y. Año; NR. Número de liberaciones.
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Encounter period

1992  1993         1994       1995         1996        1997         1998        1999        2000

E N R E N R E N R E N  R E N R E N R E N R E N R E N R

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 2 1 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 4 0 0 3 0 0 1 0 0 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 1 5 0 0 1 0 2 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 2 0 0 2 0 0 2 2 0 1 5 0 2 2 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 2 0 2 1 0 1 1 0 1 0 2 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0

0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

24 11 0 1 6 0 2 2 0 1 2 5 1 0 2 0 1 1 0 0 1 0 0 0

0 0 5 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

9 18 0 0 0 0 0 0 0 0 1 4 0 0 0 0 0 1 0 0 1

0 0 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

1 7 0 0 2 0 0 1 0 0 0 0 0 1 1 0 0 0

0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 4 0 2 1 0 0 0 0 0 0 0 0 2 0

1 0 3 0 0 0 0 0 0 0 0 0 0 0 0

6 20 0 1 1 0 2 0 0 0 1 0

0 1 0 0 0 1 0 0 1 0 1 0

2317 0 1 1 0 1 2 0

0 0 0 0 0 2 0 0 0

1421 0 1 2 0

0 0 1 0 0 0

2 11 0

0 0 1
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Table 4. Test results of intrinsic identifiability of the mortality causes models used in the case study
(table 2) as obtained by computer algebra methods (Gimenez et al., 2003). t denotes time–dependence,
and k is the number of capture occasions. See table 2 for a description of the model notations.

Tabla 4. Resultados de ensayo de la identificabilidad intrínseca de los modelos de causas de mortalidad
empleados en nuestro estudio (tabla 2), obtenidos mediante el empleo de métodos algebraicos asistidos
por ordenador (Giménez et al., 2003). t indica la dependencia del tiempo, mientras que k es el número de
casos de captura. Ver tabla 2 para una descripción de las anotaciones sobre los modelos.

         Separately identifiable        Number of
    Model        parameters           estimated quantities

ME(a2*t), MN(a2*t), p(t), rE(t), rN(t) All, but the last in all parameters 7k–8

ME(a2*t), MN(a2*t), p(t), rE(t), rN(a2) All 6k–4

ME(a2*t), MN(a2*t), p(t), rE(t), rN(.) All 6k–5

ME(a2*t), MN(a2*t), p(t), rE(.), rN(a2*t) p2,...,pk–2 7k–8

ME(a2*t), MN(a2*t), p(t), rE(.), rN(t) All 6k–5

ME(a2*t), MN(a2*t), p(t), rE(.), rN(a2) All 5k–2

ME(a2*t), MN(a2*t), p(t), rE(.), rN(.) All 5k–3

Table 3. Selection among different recovery models of Swiss White Storks. rE represents the recovery
rate of storks killed by power lines and rN denote the recovery rate of storks that died because of
other causes. The expression in parentheses denote whether the parameter is constant (.), time–
dependent (t), age–dependent (a2), or age– and time–dependent (a2*t). The other parameters in the
models, the mortality rate due to power line collision (ME), the mortality rate due to other causes (MN)
and recapture rate (p) were always kept age and time–dependent and time–dependent, respectively
(ME(a2*t), MN(a2*t), p(t)).

Tabla 3. Selección entre los diferentes modelos de recuperación de cigüeña blanca de Suiza. rE
representa la tasa de recuperación de cigüeñas muertas tras haber colisionado con tendidos eléctricos,
mientras que rN revela la tasa de recuperación de cigüeñas que murieron por otras causas. La
expresión entre paréntesis indica si el parámetro es constante (.), dependiente del tiempo (t),
dependiente de la edad (a2), o dependiente de la edad y del tiempo (a2*t). El resto de parámetros
empleados en los modelos, tasa de mortalidad debida a la colisión con tendidos eléctricos (ME), tasa
de mortalidad debida a otras causas (MN) y tasa de recaptura (p), siempre se mantuvieron dependientes
de la edad y del tiempo y dependientes del tiempo, respectivamente (ME(a2*t), MN(a2*t), p(t)).

Model Deviance  Parameters         �AIC       AIC–weight

rE(.), rN(a2) 4481.38 79 0.00 0.60

rE(.), rN(.) 4486.50 77 1.13 0.34

rE(t), rN(a2) 4462.65 91 5.29 0.04

rE(.), rN(t) 4467.88 90 8.52 0.01

rE(t), rN(.) 4470.26 89 8.89 0.01

rE(.), rN(a2*t) 4460.25 100 20.88 0.00

rE(t), rN(t) 4464.13 105 34.77 0.00

rE(t), rN(a2*t) 4459.40 118 56.03 0.00
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Results

Model selection revealed no evidence that the re-
covery rates varied over time (table 3). There was
some uncertainty about whether the recovery rate
due to other causes than collision with power lines
was age–dependent. The best model with age–
dependent recovery rate had 1.76 times more sup-
port than the model with constant recovery rates
(table 3). Still, for the presentation of the results
and the calculations that follow we considered only
the most parsimonious model.

Six of the eight candidate models are intrinsi-
cally identifiable (table 4), including the most parsi-
monious one. A presumption that the estimates
from that model are suitable is therefore fulfilled.

Both mortality rates were higher in juveniles than
in adults (fig. 2). Power line kill rate in both age
classes was usually lower than the mortality rate
due to other causes. The confidence intervals of the
estimates were rather wide, resulting either from
the possible over–parameterisation of the model
(no model selection was performed for the mortality
rates) and/or from the near non–identifiability of the

Fig. 2. Mortality rates due to collisions with overhead power lines (filled dots) and due to natural
causes (open dots) in juvenile (A) and adult (B) Swiss White Storks estimated with the most
parsimonious model {ME(a2*t), MN(a2*t), p(t), rE(.), rN(a2)}. The vertical lines show the range of the
95% confidence interval.

Fig. 2. Tasas de mortalidad por colisiones con tendidos eléctricos aéreos (círculos negros) y por
causas naturales (círculos blancos) en cigüeñas blancas de Suiza jóvenes (A) y adultas (B), estimadas
mediante el empleo del modelo más moderado {ME(a2*t), MN(a2*t), p(t), rE(.), rN(a2)}. Las líneas
verticales indican el rango del intervalo de confianza del 95%.

A

B

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0.6

0.5

0.4

0.3

0.2

0.1

0
84 86 88 90 92 94 96 98

Collision

Natural

M
o

rt
al

it
y

M
o

rt
al

it
y



82 Schaub & Lebreton

Table 5. Estimated variance components and
their standard errors. "E

2 and "N
2 are the

temporal variances of the independent
components of powerline and natural mortality
rates, respectively. "2 is the variance of their
common component. A non–null value for "2

results in a negative correlation over time
between mortality rates (see text for further
explanations). All variance components are not
statistically different from zero (P > 0.05): P.
Parameter; E. Estimate; SE. Standard Error.

Tabla 5. Componentes de varianza estimados y
sus errores estándar. "E

2 y "N
2 son las varianzas

temporales de los componentes independientes
de las tasas de mortalidad por colisión con tendidos
eléctricos y las tasas de mortalidad por causas
naturales, respectivamente. "2 es la varianza de
su componente común. Un valor de no nulidad
para "2 se traduce en una correlación negativa a
lo largo del tiempo entre las tasas de mortalidad
(para más detalles al respecto, ver el texto).
Ningún  componentes de varianza difiere
estadísticamente de cero (P > 0.05): P. Parámetro;
E. Estimado; SE. Error estándar.

        P     E  SE

Juveniles

"E
2 0.028915 0.03297

"N
2 0.040161 0.02911

"2 0.021737 0.01368

Adults

"E
2 0.000000 Not available

"N
2 0.000000 Not available

"2 0.000000 Not available

model. There was a strong negative correlation
between the two mortality rates ME and MN in
juveniles, but not in adults (fig. 3). This suggest that
there is some form of compensation in the juve-
niles. However, the observed correlation results
from correlation between real (i.e. parameter) val-
ues and sampling correlation.

The variance components of the two mortality
rates were not different from zero in juveniles (ta-
ble 5; P > 0.05), thus variation over time was small.
Yet the correlation between the two mortality rates
was negative [corr(ME, MN) = –0.3882]. This suggest
that power line mortality is slightly compensated for
by other forms of mortality in juveniles. In the adults
the variation of the two mortality rates over time
was very low, rendering the estimation of the vari-
ance components and the correlation between the
two mortality causes impossible. Consequently the
hypothesis could not be tested in the adults.

Fig. 3. Correlation of the mortality rates due
to power line collision and the mortality rate
due to natural causes in Swiss White Storks
in juvenile (A) and adult (B) (estimated using
model {ME(a2*t), MN(a2*t), p(t), rE(.), rN(a2)}).
The correlations are subject to sampling and
true process correlation, and thus not suited
to reject or support the additive hypothesis of
mortality causes.

Fig. 3. Correlación de las tasas de mortalidad
por colisiones con tendidos eléctricos y por
causas naturales en la cigüeña blanca de
Suiza en juveniles (A) y adultos (B) (estima-
das mediante el empleo del modelo {ME(a2*t),
MN(a2*t), p(t), rE(.), rN(a2)}). Las correlaciones
están sujetas a muestreo y a la verdadera
correlación del proceso, por lo que no resul-
tan apropiadas para desestimar o defender la
hipótesis aditiva de las causas de mortalidad.
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checked in order to decide whether the results are
sound.

Another problem for testing the additive hypoth-
esis is the fairly strong negative correlation between
the two mortality rates that arose from competing
risks (see appendix). Hence, the proper null hypoth-
esis H0 would not be corr(MA, MB) = 0, but rather
corr(MA, MB) = –x, where x has an unknown value.
The difficulty of formulating the proper H0 exists also
in other approaches and appears as a general
difficulty in testing the additive and compensatory
hypotheses of mortality.

What could be done to render the described
approach more generally applicable? First, for a
wider use of this method it would be very valuable
to conduct a simulation study. Such a study could
evaluate how accurately the parameters can be
estimated depending on different degrees of tem-
poral variation in the two mortality or recovery
rates, and how strongly the outcome of the hypoth-
esis test is compromised by inaccurate estimates
of mortality rates. Second, it is worthwhile to ex-
plore how additional information could be used to
stabilise the estimation of the parameters. The use
of Bayesian priors for the recovery rates is certainly
a promising possibility to explore.
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Appendix. The correlation between two competing sources of mortality.

Apéndice. Correlación entre dos causas de mortalidad competitivas.

The starting point is the approximate equation for survival: S = 1 – MN – ME l S0 – S0ME

form which one deduces: MN l (1 – S0) (1 – ME)

The three terms in this equation are random variables changing from year to year. The property X and
Y independent implies E(XY) = E(X)E(Y) (e.g., Mood et al., 1974, p.181) and leads then to:

E(MN) l (1 – E(S0))(1 – E(ME))

    E(MN ME) l (1 – E(S0)) E(ME) – (1 – E(S0))E(ME
2)

Hence:

E(MN ME) – E(MN) E(ME)  l (1 – E(S0)) E(ME) – (1 – E(S0))E(ME
2) – (1 – E(S0))E(ME) + (1 – E(S0)E(ME)2

i.e.,    cov(MN,ME) l –(1 – E(S0)) var(ME)

This first result implies a negative correlation between MN and ME even with additivity of instantaneous
sources of mortality. The next step is to calculate the correlation. First, using the formula for the
variance of a product of independent random variables (Mood et al. 1974, p. 181):

      var(MN) l var((1 – S0) (1 –  ME)) = (1 – E(S0))
2 var(ME) + (1 – E(ME))2 var(S0) + var(ME) var(S0)

Then, using the various results above, with                               :

which simplifies to:

or still:

or still:

For the first year White Stork with E(S0) l 0.65, E(ME) l 0.25, var(S0) l 0.04, and var(ME) l 0.03, we
expect the correlation between MN and ME to be corr(MN,ME) = –0.36 also if the two mortality causes
are completely additiv.


