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Abstract
Hierarchial mark–recapture models: a framework for inference about demographic processes.— The
development of sophisticated mark–recapture models over the last four decades has provided fundamental
tools for the study of wildlife populations, allowing reliable inference about population sizes and demo-
graphic rates based on clearly formulated models for the sampling processes. Mark–recapture models are
now routinely described by large numbers of parameters. These large models provide the next challenge to
wildlife modelers: the extraction of signal from noise in large collections of parameters. Pattern among
parameters can be described by strong, deterministic relations (as in ultrastructural models) but is more
flexibly and credibly modeled using weaker, stochastic relations. Trend in survival rates is not likely to be
manifest by a sequence of values falling precisely on a given parametric curve; rather, if we could somehow
know the true values, we might anticipate a regression relation between parameters and explanatory
variables, in which true value equals signal plus noise. Hierarchical models provide a useful framework for
inference about collections of related parameters. Instead of regarding parameters as fixed but unknown
quantities, we regard them as realizations of stochastic processes governed by hyperparameters. Inference
about demographic processes is based on investigation of these hyperparameters. We advocate the
Bayesian paradigm as a natural, mathematically and scientifically sound basis for inference about
hierarchical models. We describe analysis of capture–recapture data from an open population based on
hierarchical extensions of the Cormack–Jolly–Seber model. In addition to recaptures of marked animals, we
model first captures of animals and losses on capture, and are thus able to estimate survival probabilities
' (i.e., the complement of death or permanent emigration) and per capita growth rates f (i.e., the sum of
recruitment and immigration rates). Covariation in these rates, a feature of demographic interest, is
explicitly described in the model.

Key words: Bayesian hierarchical analysis, Capture–recapture, Demographic analysis, Jolly–Seber Model,
Open population estimation.

Resumen
Modelos jerárquicos de marcaje–recaptura: un marco para la inferencia de procesos demográficos.— El
desarrollo de sofisticados modelos de marcaje–recaptura a lo largo de las últimas cuatro décadas ha
proporcionado herramientas fundamentales para el estudio de poblaciones de fauna silvestre, lo que ha
permitido inferir con fiabilidad los tamaños poblacionales y las tasas demográficas a partir de modelos
claramente formulados para procesos estocásticos. En la actualidad, los modelos de marcaje–recaptura se
describen de forma rutinaria mediante una extensa serie de parámetros. Dichos modelos representan el
siguiente reto al que deberán enfrentarse los modeladores de fauna silvestre: discriminar las señales del
ruido en amplias series de parámetros. La pauta que encontramos en los parámetros puede describirse
mediante sólidas relaciones deterministas (como en los modelos ultraestructurales), pero resulta más
flexible y creíble si se modela utilizando relaciones estocásticas más débiles. No es probable que la
tendencia en las tasas de supervivencia se manifieste por una secuencia de valores hallados concretamente
en una curva paramétrica dada; por ello, si pudiéramos llegar a conocer los valores reales, podríamos
prever una relación de regresión entre parámetros y variables explicativas, de forma que el valor verdadero
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equivaldría a la señal más el ruido. Los modelos jerárquicos proporcionan un marco útil para la inferencia
acerca de series de parámetros relacionados. Así, en lugar de interpretar los parámetros como cantidades
fijas, pero desconocidas, los interpretamos como realizaciones de procesos estocásticos regidos por
hiperparámetros. La inferencia acerca de los procesos demográficos se basa en la investigación de dichos
hiperparámetros. Por este motivo, defendemos el paradigma bayesiano como una base natural, matemática
y científicamente sólida para la inferencia acerca de modelos jerárquicos. En el presente estudio
describimos el análisis de datos de captura–recaptura obtenidos a partir de una población abierta basada
en ampliaciones jerárquicas del modelo de Cormack–Jolly–Seber. Además de las recapturas de animales
marcados, también modelamos las primeras capturas de animales y de pérdidas durante la captura, lo que
nos permitió estimar las probabilidades de supervivencia de ' (es decir, el complemento de la muerte o la
emigración permanente) y las tasas de crecimiento per cápita f (es decir, la suma de las tasas de
reclutamiento y de migración). En el modelo se describe explícitamente la covariación en estas tasas, que
constituye una característica de interés demográfico.

Palabras clave: Análisis jerárquico bayesiano, Captura–recaptura, Análisis demográfico, Modelo de Jolly–
Seber, Estimación de población abierta.

William A. Link, Patuxent Wildlife Research Center, Laurel, MD, 20708, U.S.A.– Richard J. Barker,  Univ. of
Otago, Dunedin, New Zealand.
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Introduction

Observations of biological systems are variable.
Mathematical models describing this variability in-
corporate two sources of variation: variation relat-
ing to the biological system itself (birth, death, and
behavioral processes), and variation relating to the
collection of data. Thus there are two categories of
parameters in models for biological data. We will
let ����� denote the collection of demographic param-
eters describing biological processes, and ����� denote
the collection of parameters governing collection of
data; we will assume that these are unrelated,
though this need not be the case.

The parameters comprising ����� are the parameters
of interest. Those comprising ����� are often referred to
as "nuisance parameters". It is an appropriate name:
their inclusion in the modeling effort is a necessary
evil, and one which must be handled with care,
because incorrect assumptions about ����� can lead to
profound biases in estimation of �����.

The field of capture–recapture has developed over
the last forty years with its first priority being on
accounting for biologically irrelevant sources of vari-
ation in data. Increases in computational efficiency
have allowed for analysis of larger data sets which
not only include many nuisance parameters, but
also many parameters of interest. The vector ����� may
have hundreds of components, including survival
rates, recruitment rates, population sizes, movement
parameters. We believe that the next priority in
capture–recapture analysis should be the develop-
ment of statistically sound methods for analysis, not
of data, but of the parameters comprising �����.

In this paper, we describe hierarchical models
useful in examining pattern in parameters, making
note of various ad hoc methods that have been
used for examining them, and arguing for the use-
fulness and appeal of the Bayesian paradigm in
this context. We illustrate our discussion with an
hierarchical extension of the Cormack–Jolly–Seber
model which allows for efficient, statistically sound
analysis of covariation among demographic rates.

Hierarchical models defined; ad hoc
analytic methods

Suppose that we did not have to deal with nuisance
parameters, indeed, that we did not need to esti-
mate �����, but knew its components without error.
What would we do? Why, we’d do some statistical
analyses, regressing survival rates against time,
examining whether recruitment rates were related
to population size, and performing similar analy-
ses. After all, the entire purpose of collecting bio-
logical data is to make inference about �����.

We would be mightily surprised if there were
perfect, deterministic relations among the actual
parameters. That is, if 't is a survival rate for time
period [t, t+1), we would not expect

log ('t)= A + Bt (1)

though we might anticipate acceptable fit of a model
with

log ('t)= a + bt + �t      (2)

where the values �t are a sample from a mean–zero
normal distribution. The first of these specifies
strong, deterministic relations among parameters;
the survival rates are perfectly predictable, chang-
ing in lockstep fashion through time. The second
specifies weaker, stochastic relations among pa-
rameters, general tendencies rather than predeter-
mined patterns. The role of the error term �t is to
account for sources of variation that are not ex-
plained by known covariates, but that nevertheless
are an important source of variation to the survival
probabilities; modeling thus, we assume that the
collective effects of unknown covariates amount to
uncorrelated random noise.

All statistical analyses, even nonparametric ones,
begin with the specification of a family of distribu-
tions from which data have been drawn. Parametric
analyses restrict the family to a general form, known
except for certain unknown parameters, typically
regarded (in the Frequentist paradigm) as "fixed but
unknown constants". Hierarchical models treat these
parameters as though they also were sampled from
parametric families of distributions. Thus, many
data are described by model specifications and
fewer parameters; these parameters are described
by further model specifications and even fewer
parameters.

The simplest hierarchical models are familiar as
random effects models. Indeed, the notion of find-
ing and evaluating pattern among parameters is no
new one. What is changing is the manner in which
such models are fit to data. Over the years, the
approach to investigating stochastic relations among
demographic parameters has been one of two sorts
(Link, 1999). First, we might fit an unconstrained
model, treating components of �����  as completely
unrelated, then attempting to uncover the stochastic
relations among parameters by examination of their
estimates �����. Thus, for example, if we were inter-
ested in examining temporal pattern of change in
survival rates, we might fit the model

    log ( )= a* + b*t + �t* (3)

instead of (2), in the hope that inference about b* in
(3) could inform us about the parameter b in (2).
This approach could be called a two–stage modeling
approach: first estimate the parameters without speci-
fying relations among them; then, look for those
relations among the parameter estimates obtained.

The other commonly used approach to examin-
ing pattern among parameters has been ultrastruc-
tural modeling, in which the pattern among param-
eters is treated as deterministic. To examine tem-
poral patterns of change in survival, we estimate
the parameters 't subject to the constraint given by
equation (1). Thus the parameter set is reduced
from {'1, '2,...} to {A, B}. We attempt to model {a,
b} using the pair {A, B}.
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The two–stage and ultrastructural approach are
approximate and unsatisfactory: in two–stage analy-
ses, there may be problems of attenuation bias when
random regressors are used. There may be inefficien-
cies, even gross ones, due to heterogeneity of
variances among the estimators. Failure to adequately
account for the sampling variability of parameter
estimates, when using these as surrogates for actual
parameter values, can be spectacularly misleading.
Ultrastructural analyses often (but not inevitably) pro-
duce reasonable estimates, though usually with over-
stated precision. Various methods for improving ul-
trastructural and two–stage analyses have been de-
veloped, but may generally be said to only work
asymptotically. In using them, we ought not to forget
Le Cam’s 7th principle: "If you need to use asymptotic
arguments, do not forget to let your number of obser-
vations tend to infinity" (Le Cam, 1990).

Hierarchical models and Bayesian analysis

Instead of using ad hoc methods of analysis for
hierarchical models, we recommend the use of
Bayesian methods. The first advantage of these is
the naturalness of their application to hierarchical
models. All quantities in Bayesian inference are
random variables; the only distinction being whether
quantities are known or not. Thus the hierarchical
modeling view of parameters as random variables
is completely natural to Bayesian analysis.

Second, Bayesian analysis, properly conducted,
requires no fussing over optimality criteria, choice
of estimation technique, or asymptotics. There is
nothing but a calculation, the calculation of a pos-
terior distribution from a prior and a likelihood. All
inference is based on features of the posterior
distribution.

But what of the prior? Choice of the prior distri-
bution is the classically trained statistician’s
Bayesian bugaboo. Choice of the prior is thought
by some to introduce an irremediable and unac-
ceptable subjectivity into the analysis. Attempts to
define noninformative priors for objective analysis
are dismissed by some critics on the grounds that
the quality of noninformativeness is not transfor-
mation invariant. For instance, a noninformative
prior for "2  is not a noninformative prior for ". It is
a marvelous thing that such critics will frequently
choose the (n – 1) weighted variance estimator S2

as an estimator of "2 because it is unbiased, giving
no thought to the fact that S, the value they will
actually use in discussion, is a biased estimator of
". Unbiasedness, like noninformativeness of priors,
is not transformation invariant. Lack of transforma-
tion invariance is a problem for Frequentists as well
as for Bayesians.

The simple solution to the problem of choosing
priors is to try several, and to see whether and how
the choice influences posterior inference. In our
view, this is a virtue rather than a vice of Bayesian
inference. What is more, the Bernstein–Von Mises
Theorem (also known as the Bayesian Central Limit

theorem) implies that, subject to minor constraints,
the influence of the prior diminishes as the sample
size increases, so that the choice will not matter if
sample sizes are reasonably large.

Putting aside all of the overheated and over-
blown Bayesian/Frequentist polemics, we find that
the differences of inference generally prove to be
slight, provided we have adequate data. If we are
willing to adopt the Bayesian paradigm, we may
avail ourselves of the powerful computational tech-
niques known as Markov chain Monte Carlo (MCMC)
to examine features of the posterior distribution.
And even if we simply cannot shake misgivings
about the Bayesian paradigm, MCMC is still useful:
by specifying uniform prior distributions, the poste-
rior distribution is simply the scaled likelihood, and
its mode the maximum likelihood estimator. We
thus obtain a tool for formal examination of com-
plex demographic structures in data sets; specifica-
tion of stochastic relations among demographic
parameters becomes part of data modeling, rather
than something done after the fact using dubious
ad hoc methods.

An analysis of  association among
demographic parameters

We illustrate the use of hierarchical models with an
analysis of temporal relations between demographic
parameters governing rates of population change.
These are survival rates ' (i.e., the complement of
death or permanent emigration) and per capita
growth rates f (i.e., the sum of recruitment and
immigration rates); the analysis will allow formal
evaluation and testing of associations between these
demographic parameters. We analyze the
Gonodontis data set of Bishop et al. (1978), which
has been evaluated in several subsequent papers
developing methods for open–population survival
analysis (Crosbie, 1979; Crosbie & Manly, 1985;
Link & Barker, in press); the model we describe is
an extension of the Cormack–Jolly–Seber (CJS)
model (Cormack, 1964; Jolly, 1965; Seber, 1965).

The CJS model uses likelihood proportional to
the joint distribution of sufficient statistics r and m,
given statistics u and R. These statistics are vec-
tor–valued; Ri from R is the number of individuals
released after the ith sampling occasion, and ri
from r is the number of these subsequently recap-
tured. Components of m and u are the numbers of
marked and unmarked animals, respectively, at
each of the sampling occasions. The conditional
distribution corresponding to the CJS model can be
written in self–explanatory notation as

    [r, m | R, u] (4)

The dependence of this distribution on demo-
graphic and nuisance parameters is suppressed in
this notation. We note however that the only demo-
graphic parameters are survival rates 'i. Neither
population size nor population growth rates are
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included in the model. An extension of the CJS
model is needed; we propose one subsequently.

Step one: obtaining a likelihood based on
parameters of interest

The first step in conducting a Bayesian hierarchical
analysis is the specification of a likelihood for the
data in terms of the parameters of interest. This is
generally straightforward, but can sometimes re-
quire some thought about reparameterizing and ex-
tending models.

The first attempt to extend the CJS model so as
to allow examination of population change was the
Jolly–Seber (JS) model. This extension had two
components. The first, relatively minor change, is
the addition of a parametric description of loss on
capture, thus removing the conditioning on R, so
that the likelihood used is proportional to

       [r, m, R | u] (5)

Of greater importance is the modeling of first
captures ui as binomial with index Ui. Identifiability
of Ui, the number of unmarked animals in the
population just prior to the ith sampling occasion,
is obtained by assuming that the nuisance param-
eters (detection probabilities) are the same for
marked and unmarked animals. The JS model
thus uses a likelihood proportional to the joint
distribution

[r, m, R | u] [u | U] (6)

The population numbers of unmarked animals,
Ui, are not of much interest per se, for investigating
relations between survival and other parameters
governing population growth rates. The model is
not expressed in terms of quantities in which we are
directly interested. If we want to use the JS model
for our hierarchical investigations, we are forced to
carry out a two–stage analysis, first obtaining esti-
mates of demographic parameters (first, we esti-
mate the population number of marked animals,
and add this to the estimated number of unmarked
animals to obtain an estimate of population size;
more precisely, we should say, "predict" the popula-
tion size, since population size is not part of the JS
model; with the additional assumption that survival
rates are the same for marked and unmarked ani-
mals, the resulting estimates of population change
can be partitioned among changes due, on the one
hand, to mortality, and to nonmortality sources, on
the other), and then looking for associations among
the estimates.

Instead, we consider an alternative extension of
the CJS model, following work by Crosbie & Manly
(1985), and later developed by Schwarz & Arnason
(1996). Schwarz & Arnason describe the model in
terms of a likelihood proportional to

     [r, m, R | u] [u | N*]

where N* is the number of distinct animals avail-
able for capture on at least one of the sampling
occasions. Their model includes the additional as-
sumption that survival and detection rates are the
same for marked and unmarked animals.

We demonstrate elsewhere that

  [u | N*] = [u | u.] [u. | N*]

where u. = �i ui, and that there is very little informa-
tion in the likelihood component proportional to
[u. | N*] (Link & Barker, in press). We thus eliminate
that from the likelihood, and base our analysis on

[r, m, R | u] [u | u.] (7)

It can be shown that the distribution [u | u.] is
multinomial with index u., and cell probabilities �i
determined by detection and survival rates from
the CJS model and t – 1 additional estimable
parameters, namely !1,f2,f3,...,ft–2 and !t. Here,
parameters fi (slightly different from the growth
rate parameters of Pradel et al., 1996; for details,
see Link & Barker, in press) are per capita growth
rates (recruitment plus immigration). Parameters
!1 and !t are confounded combinations of demo-
graphic and nuisance parameters. Details on these
and the functional form of �i are given in the
Appendix.

We use (7) as the basis for hierarchical analysis
of relations between survival and growth rates rather
than (5), because it is expressed entirely in terms of
the demographic parameters of interest, and a clearly
identified set of nuisance parameters.

We have

  �  �  �  �  � = {'''''; f} = {'1,'2,...,'t–2;f2,f3,...,ft–2}

and
           ����� = {!2,!3,...,!t–1;v2,v3,...,vt–1;!1,!t,�t–1}

here, t is the number of sampling occasions, !i
is the detection probability at sampling occasion
i, vi is the probability of successfully releasing
an animal captured at sampling occasion i, and
�t–1 = 't–1 !t.

Step two: describing stochastic relations
among parameters of interest

The next step in a hierarchical analysis is a de-
scription of stochastic relations among param-
eters of interest. From the Bayesian perspective,
as we shall see subsequently, this amounts to a
partial specification of the prior distributions of
parameters.

Our goal is to examine stochastic relations be-
tween 'i's and fi's. Since 0 < 'i < 1 and fi > 0, it is
natural to transform the parameters in order to
remove the range restrictions. We thus suppose
that pairs

�i = {logit ('i) log (fi)}
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follow a bivariate normal distribution with mean
vector ����� and variance matrix 33333. The correlation
parameter in the variance matrix is of primary
interest, as determining the strength of association
between 'i's and fi's . We will refer to ����� = {�����, 33333} as
the hyperparameters.

The process of specifying this part of the model is
similar to the corresponding process for modeling
stochastic relations among data. Ideally, there should
be some basis in first principles for deciding on
whether data are normally distributed, or whether a
Poisson distribution, or Binomial is appropriate. Alter-
natively, distributional choices are often made on the
basis of convenience. In observational studies, these
choices are usually made after informal inspection of
the data; similar informal evaluations of parameters
might be based on the ad hoc methods described at
the outset. In any case, the same sort of model
checking used for evaluating distributional assump-
tions for data should be used to evaluate distributional
assumptions about parameters.

Step three: selection of prior distributions

So far, we have suppressed in our notation the
dependence of the likelihoods on the parameters.
In order to complete the specification of a Bayesian
hierarchical model, we make this dependence ex-
plicit, rewriting (7) as

    [r, m, R | u; �����, ����� ] [u | u.; �����, �����]

All that remains for a fully Bayesian specification of
the model, is a description of prior distributions for
parameters and hyperparameters, i.e. [�����, �����,�����]. Here,
we assume prior independence of the nuisance and
demographic parameters, so that

   [�����, �����,�����] = [�����,�����] [�����] = [� � � � � | �����] [�����] [�����]

Our study of association among demographic pa-
rameters will be based on the partial specification
of the prior structure, namely [� � � � � | �����]. The posterior
distribution upon which we shall base inference is
proportional to the joint distribution

[r, m, R | u; �����, ����� ] [u | u.; �����, �����] [� � � � � | �����] [�����] [�����] (8)

All that remains is specification of the prior distribu-
tions [�����] and [�����]. We chose flat priors [�����] ≠ c, for
the nuisance parameters.

We chose a Normal–Inverse Wishart prior dis-
tribution for �����. This is the distribution obtained by
supposing that [�����, 33333] is a bivariate normal distri-
bution with mean �����0 and variance matrix 0, and
that 33333/n0 has the inverse Wishart distribution with
parameters V and df. It is an appealing choice for
a prior distribution for parameters of the multivariate
normal, because the resulting posterior distribu-
tions for � � � � � are easily calculated, also being mem-
bers of the inverse Wishart family of distributions.
The inverse Wishart distribution can be thought of

as the distribution of

where Xi  are independent and identically distrib-
uted bivariate normal random variables with vari-
ance matrix V–1. Choice of the particular Normal–
Inverse Wishart prior requires specification of �����0,
n0  m 0, V, and df m 2.

For the Gonodontis data set t = 17. Recognizing
that there are only t – 3 = 14 estimable pairs ('i, fi)
informing our inference about the covariation, we
anticipated some sensitivity to the choice of param-
eters governing the choice of NIW priors for (�����, 33333),
hence decided to repeat the analysis for four choices
of prior. We set n0 = 0 in all analyses, inducing vague
priors on �����. Choice of parameters for the inverse
Wishart distribution for 33333 was guided by the obser-
vations that if df m 1,

1) The diagonal elements of 33333 have inverse
Gamma distributions:

where Vi,i  is the ith diagonal element of V, so that  "i
2

has the same distribution as Vi,i / A, where A i (2
df–1,

and
2) That given V is a diagonal matrix, the mar-

ginal distribution of the correlation parameter p is
such that

The four priors we considered were: (1) df = 2,

Fig. 1. Annual survival vs. nonsurvival growth
rates (symbol size proportional to precision).

Fig. 1. Tasas de crecimiento de supervivencia
anual respecto a no supervivencia (el tamaño de
los símbolos es proporcional a la precisión).
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these questions can be dismissed, what about com-
puting a confidence interval for the estimated corre-
lation parameter,   ? Are we confident that the esti-
mator has a normal distribution, even though there
are only 14 values (estimates, at that) from which it
is calculated?

Far more satisfactory, to our mind, is the
Bayesian analysis we have developed in the fore-
going sections. We find relatively minor differ-
ences among the results based on four distinct
priors; these are summarized in plots of the poste-
rior distributions for p in figure 2, and on summa-
ries of these distributions in table 1. The posterior
probability that  p > 0 is roughly 84% for all of the
priors considered (0.843, 0.857, 0.816 and 0.843,
for priors 1, 2, 3, and 4); the posterior odds are 5:1
in favor of a positive correlation.

Summary and comments

Associations among demographic parameters are
very naturally modeled by treating the parameters
as random variables, the associations arising be-
cause the parameters have been sampled from
related distributions. Such hierarchical models posit
the existence of weak, stochastic relations among
parameters, rather than unrealistic deterministic re-
lations. The Bayesian paradigm, in which all quanti-
ties are treated as stochastic, is particularly appro-
priate for consideration of hierarchical models.

We therefore encourage the following view of
capture–recapture models. Data Y are described in
terms of their dependence on demographic param-
eters ����� and nuisance parameters �����, through distri-

Fig. 2. Posterior distributions of !.

Fig. 2. Distribución posterior de !.

V = diag (1, 1); (2) df = 2, V = diag (2.5, 1.25); (3)
df = 3, V = diag (1, 1); (4) df = 3, V = diag (5.0, 2.5).

The first two priors maximize the coefficient of
variation of the diagonal elements of 33333, subject to
the requirement that [33333] be proper; the third and
fourth induce a uniform prior on the correlation
parameter. The second and fourth fix the prior
means of the precision (inverse variance) for logit
survival rates and log birth rates at values of 0.40
and 0.80, respectively; these values were chosen
as representing large levels of variability in de-
mographic parameters. The first and third priors
were chosen as representative of moderate levels
of variability in demographic parameters.

Analysis of correlation in Gonodontis data

Figure 1 is a scatter plot of maximum likelihood
estimates         based on the Pradel (1996) model,
as implemented in program MARK (White &
Burnham, 1999); note that the size of the plotting
image reflects the relative precision of estimates.
Three points, with imprecise estimates on the edge
of the parameter space, were excluded.

The plot suggests a positive association between
the vital rates. We wish to study the association
between log(f) and logit('). However, uncovering
this association by "doing statistics on statistics" is
problematic. First, how are we to transform esti-
mates  = 1 to the logit scale? How are we to
account for sampling variation, and covariation? Are
the asymptotic variance estimates obtained from the
estimated Fisher information matrix reliable? And
supposing that all of the uncertainties raised by

Wishart priors
on variance matrix

df = 2, S = diag (1,1)
df = 3, S = diag (1,1)
df = 2, S = diag (2.5,1.25)
df = 3, S = diag (5.0,2.5)

Pr(!!!!! > 0 |Y) = 0.84
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Table 1. Summaries of posterior distributions for p in analysis of Gonodontis data. First column
indicates prior as numbered in text.

Tabla 1. Resúmenes de distribuciones posteriores de p en el análisis de datos de Gonodontis. En la
primera columna se indican las distribuciones anteriores según constan numeradas en el texto.

Quantiles of posterior distribution

           Mean       SD      0.025   0.100     0.250     0.500      0.750 0.900  0.975

1 0.383 0.353 –0.425 –0.131 0.157 0.447 0.664 0.793 0.880

2 0.372 0.323 –0.356 –0.089 0.164 0.420 0.623 0.754 0.850

3 0.345 0.359 –0.450 –0.174 0.108 0.403 0.632 0.772 0.868

4 0.314 0.296 –0.330 –0.098 0.118 0.346 0.54 0.677 0.788

butional assumptions specifying [Y | �����, �����]. The prior
distribution [�����, �����] is factored as

[�����, �����] ≠≠≠≠≠ [�����] [����� | �����]  [�����]

or possibly as

[�����, �����] ≠≠≠≠≠ [����� | � � � � �] [����� | �����]  [�����]

if it is thought that the nuisance and demographic
parameters are related. Associations among demo-
graphic parameters are modeled in the partial speci-
fication of the prior, [����� | �����].

Given the specification of likelihood and prior,
there is no need for asymptotic approximations, no
need for selection among multitudinous optimality
criteria, no need to "do statistics on statistics".

There remains only a calculation, for the likeli-
hood and prior determine the posterior distribution,
upon which all inference is based. Software such as
WinBUGS (Spiegelhalter et al., 2003) provides an
easy entree into Bayesian analysis through imple-
mentation of Markov chain Monte Carlo (simulation
based) evaluation of the posterior distribution.

References

Bishop, J. A., Cook, L. M. & Muggleton, J., 1978.
The response of two species of moths to indus-
trialization in northwest England. II Relative fit-
ness of morphs and populations size. Phil. Trans.
R. Soc. Lond. B., 281: 517–540.

Cormack, R. M., 1964. Estimates of survival from
the sighting of marked animals. Biometrika, 51:
429–438.

Crosbie, S. F., 1979. The mathematical modelling
of capture mark recapture experiments on ani-
mal populations. Ph. D. Thesis, Univ. Otago,
Dunedin, New Zealand.

Crosbie, S. F. & Manly, B. F. J., 1985. Parsimoni-
ous modelling of capture mark recapture stud-
ies. Biometrics, 41: 385–398.

Jolly, G. M., 1965. Explicit estimates from capture
recapture data with both death and immigration
stochastic model. Biometrika, 52: 225–247.

Le Cam, L. M., 1990. Maximum likelihood: an
introduction. International Statistical Review, 58:
153–171.

Link, W. A., 1999. Modeling pattern in collections of
parameters. Journal of Wildlife Management, 63:
1017–1027.

Link, W. A. & Barker, R. J. (in press). Modeling
association among demographic parameters in
analysis of open population capture recapture
data, Biometrics.

Pradel, R., 1996. Utilization of capture mark recap-
ture for the study of recruitment and population
growth rate. Biometrics, 52: 703–709.

Schwarz, C. J. & Arnason, A. N., 1996. A general
methodology for the analysis of capture recap-
ture experiments in open populations. Biomet-
rics, 52: 860–873.

Seber, G. A. F., 1965. A note on the multiple recap-
ture census. Biometrika, 52: 249–259.

Spiegelhalter, D., Thomas, A., Best, N. & Lunn, D.,
2003. WinBUGS User Manual, version 1.4.
http://www.mrc–bsu.cam.ac.uk/bugs

White, G. C. & Burnham, K. P., 1999. Program
MARK: Survival estimation from populations of
marked animals. Bird Study, 46 (Supplement):
120–139.

http://www.mrc-bsu.cam.ac.uk/bugs


Animal Biodiversity and Conservation 27.1 (2004) 449

Appendix / Apéndice

Cell probabilities of the multinomial distribution [u | u.] are �1,�2,...,�t, defined in terms of t – 1
estimable parameters !1,f2,f3,...,ft–2  and !t. Parameters !1 and !t, like �t–1 = 't–1 pt in the CJS model, are
confounded combinations of demographic and nuisance parameters. Specifically, these are

!1 = ('1+ f1) / p1              and                               !t = ft–1 pt.

Cell probabilities �i  are defined as follows: Let �2 = !1 and

for i = 3,4,...,t – 1.

Let �1 h 1,  �2 h (!1 – '1) p2,

for i = 2,3,...,t–2  and

Then


