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Abstract
Generalized estimators of avian abundance from count survey data.— I consider modeling avian abundance
from spatially referenced bird count data collected according to common protocols such as capture–
recapture, multiple observer, removal sampling and simple point counts. Small sample sizes and large
numbers of parameters have motivated many analyses that disregard the spatial indexing of the data, and
thus do not provide an adequate treatment of spatial structure. I describe a general framework for modeling
spatially replicated data that regards local abundance as a random process, motivated by the view that the
set of spatially referenced local populations (at the sample locations) constitute a metapopulation. Under
this view, attention can be focused on developing a model for the variation in local abundance independent
of the sampling protocol being considered. The metapopulation model structure, when combined with the
data generating model, define a simple hierarchical model that can be analyzed using conventional
methods. The proposed modeling framework is completely general in the sense that broad classes of
metapopulation models may be considered, site level covariates on detection and abundance may be
considered, and estimates of abundance and related quantities may be obtained for sample locations,
groups of locations, unsampled locations. Two brief examples are given, the first involving simple point
counts, and the second based on temporary removal counts. Extension of these models to open systems
is briefly discussed.

Key words: Abundance estimation, Avian point counts, Detection probability, Hierarchical models,
Metapopulation models, Population size.

Resumen
Estimadores generalizados de abundancia en aves a partir de datos de estudios de recuento.— En el
presente estudio se analiza la modelación de la abundancia en aves mediante datos de recuento de aves,
referenciados espacialmente y obtenidos a partir de protocolos comunes, como los de captura–recaptura,
muestreo por observadores múltiples, muestreo por eliminación y recuentos de puntos simples. Las
muestras de pequeño tamaño, así como el amplio número de parámetros, han propiciado numerosos
análisis que no tienen en cuenta la indexación espacial de los datos y, por consiguiente, no proporcionan
un tratamiento adecuado de la estructura espacial. En este trabajo se describe un marco general para la
modelación de datos replicados en el espacio, que considera la abundancia local como un proceso
aleatorio, todo ello basado en el punto de vista de que el conjunto de poblaciones locales referenciadas
espacialmente (en los lugares de toma de muestras) constituye una metapoblación. De este modo, la
atención puede centrarse en el desarrollo de un modelo para la variación en la abundancia local que sea
independiente del protocolo de muestreo que se esté utilizando. La estructura del modelo metapoblacional,
en combinación con el modelo de generación de datos, define un modelo jerárquico simple que puede
analizarse mediante el empleo de métodos convencionales. El marco de modelación propuesto es de
carácter general, en el sentido de que permite considerar amplias clases de modelos metapoblacionales,
covariantes del nivel del emplazamiento sobre datos de detección, y la abundancia, pudiendo obtenerse
estimaciones de abundancia y cantidades relacionadas para emplazamientos de muestreo, grupos de
emplazamientos y emplazamientos no muestreados. A tal efecto, se incluyen dos breves ejemplos; el
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primero trata de los recuentos de puntos simples, mientras que el segundo se basa en los recuentos por
extracción temporal. También se apunta la posibilidad de ampliar estos modelos a sistemas abiertos.

Palabras clave: Estimación de la abundancia, Recuentos de puntos aviares, Probabilidad de detección,
Modelos jerárquicos, Modelos metapoblacionales, Tamaño poblacional.
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commodating site–specific covariates in these com-
mon sampling protocols. Royle et al. (2004a) de-
scribe an approach for incorporating abundance
covariate effects in distance sampling models that
is related to the models described here.

One important difficulty present in most spatially
replicated bird counting surveys (of breeding birds)
is that typical abundance at individual sampled
locations is very small. Consequently, site–specific
sample sizes (number of observed birds) are small.
The general small sample situation is problematic
when it comes to estimation because the likelihood
contains many (abundance) parameters each of
which is ill–informed by the available sparse data.
Estimation of spatially explicit abundance is usually
infeasible. A common solution is to aggregate data
across sites and apply conventional estimation
methods to the aggregate counts. In doing so, site–
specific information is lost so that, for example,
estimation and modeling of site–specific covariate
effects on abundance and detection is infeasible. In
addition, spatial scale becomes a concern when
deciding how data should be aggregated. While it
may be reasonable to combine multiple samples
within a small forest or woodlot, additional consid-
erations should be relevant at larger scales. Finally,
the use of aggregated counts cannot generally be
justified based on the likelihood for the observed
data, i.e., the site–specific counts. That is, the
aggregated counts are not sufficient statistics for
the objective (total) abundance "parameter" under a
sampling scheme involving spatial replication. Ad-
ditional assumptions are required to formally justify
aggregation of count statistics among sites; this is
elaborated on in "The likelihood under spatial repli-
cation" section. These deficiencies motivate the
need for a more general approach to dealing with
spatially replicated count survey data.

In this paper, I describe a general framework for
modeling and estimation of abundance from spatially
replicated animal count data. The key idea is intro-
duction of a metapopulation model that characterizes
the (spatial) variation in abundance of the spatially
referenced populations being sampled. The
metapopulation view provides a concise framework
for combining the data collected at multiple sample
locations, regardless of the sampling protocol used to
collect data. Specification of a metapopulation model
is a great advantage because it allows the biologist to
focus on explicit formulation of the abundance model
at the level of the sample unit, independent of the
detection process. The main benefit of adopting the
metapopulation view is that a broad class of more
complex models are possible including models which
describe variation in site–specific abundance explic-
itly (e.g., with covariates), and models which allow for
latent spatial variation (overdispersion, spatial corre-
lation) that is not modeled explicitly by covariates.
These metapopulation models form the basis for the
development of generalized estimators of abundance
based on any of the previously mentioned protocols.
These are generalized in the sense that they can
accommodate variation in site–specific abundance,

Introduction

The detectability of individuals is a fundamental
consideration in many studies of animal populations.
The need to properly account for detectability has
given rise to an extensive array of sampling protocols
and statistical procedures for estimating demographic
parameters in the presence of imperfect detection
(Williams et al., 2002).

Conventional capture–recapture methods in which
individual animals are marked, released, and recap-
tured (or resighted) constitute the most useful class
of methods in terms of the information content pro-
vided by the data, and the complexity of detection
process models that may be considered. In studies
of avian populations, implementation of capture–
recapture methods is often difficult in field situations.
Because of this, there has been considerable recent
interest in methods based on avian point counting
that are capable of controlling for imperfect detection
while remaining efficient to implement in field situa-
tions. These methods include those based multiple
observer sampling (Cook & Jacobson, 1979; Nichols
et al., 2000), temporary removal (Farnsworth et al.,
2002), distance sampling (Rosenstock et al., 2002)
and even simple point counts (Royle, 2004a). These
and similar methods are also widely used in the
study of other organisms including marine mam-
mals, ungulates, and amphibians. My motivation
derives from studies of bird populations, and so
subsequent discussion and examples focus on bird
sampling problems.

Many small–scale studies of animal populations
and large–scale monitoring efforts rely on sampling
designs in which one (or more) of these common
sampling protocols is replicated spatially. This is
partly out of necessity —many species exist at low
densities, and effective sampling areas are small—
but often there is direct interest in characterizing
spatial variation in abundance. These replicated
surveys yield spatially indexed count data yi for
sample location (or site) i = 1,2,...,R. In most
sampling protocols for which it is possible to esti-
mate abundance in the presence of imperfect de-
tection, yi = {yik; k = 1,2,...,K} is a vector of counts.
As an example, if a removal protocol is used then yi
= (yi1, yi2, yi3) are the number of animals first
observed (and "removed" from further counting) in
consecutive time intervals of say 3 minutes. The
precise nature of the count statistic under other
common sampling protocols is described in "Nota-
tion and preliminaries" section.

There are two objectives considered in many
studies of animal populations that are demographi-
cally closed. First is estimation of "abundance",
population size, or density. In the context of spa-
tially replicated surveys, this is often defined as
total or average abundance of the sampled area.
The second objective is estimation of the effects of
(site–specific) covariates on abundance or density.
Typical covariates of interest are those that de-
scribe habitat or landscape structure. Interestingly,
there have been few general suggestions for ac-
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factors that influence detectability, and additional
considerations described in "The metapopulation
view" section.

Under this metapopulation formulation, local
abundance is regarded as a "random effect", and
the general model structure is commonly referred
to in statistics as a hierarchical model. Hierarchical
models are commonly analyzed by either integrated
likelihood or Bayesian methods. This is described
in "Estimation and inference" section. Modeling
abundance effects, estimating density, estimating
local population size, and even predicting abun-
dance at unsampled locations are straightforward
problems under this hierarchical modeling frame-
work.

Notation and preliminaries

Let Ni be the number of birds available to be counted
at location i; i = 1,2,...,R. Sampling yields the vector
of counts yi for each sample location. The precise
nature of the data vector yi depends on the sam-
pling protocol used. For several of the more com-
mon sampling protocols, the data structure is as
follows:

(1) For independent double or multiple observer
protocols, k indexes an "observer detection his-
tory". For example, with two independent observ-
ers, K = 3 and yi1, and is the number of birds seen
by observer 1 (but not observer 2), yi2 is the number
seen by observer 2 (but not 1), and yi3 is the
number seen by both observers. In general, with T
observers, there are K = 2T – 1 observable observer
histories.

(2) For a removal protocol, k indexes the time
interval of (first) detection. i.e., yi1 is the number of
birds first seen in interval 1, yi2 in interval 2, and yi3
in interval 3, etc.

(3) For distance sampling, the count statistics
are indexed by distance, so that yik is the number of
birds seen in distance class k at site i.

(4) For conventional "capture–recapture" experi-
ments, the data structure is analogous to that
obtained under multiple observer sampling except
that the capture history is organized in time. For
example, in a two period study, K = 3, and let yi1 be
the number of individuals with capture history "10"
(seen in the first interval, but not the second), yi2 be
the number of individuals with capture history "01",
and yi3 be the number of individuals with capture
history "11".

Various other protocols may also be considered,
including that based on simple point counts (see
"Point counts" section).

A final bit of notation will be useful. In some
applications that involve spatial replication, puta-
tive interest lies in estimation of the total abun-
dance at the sampled sites: Ntotal = �i Ni. The
familiar "dot notation" will be used to indicate vari-
ous sums. Let yi0 = Ni – yi. be the number of birds
not detected at each site where                         (the
total number detected at site i). Thus, Ntotal can be

expressed as the total count �i yi. plus the sum of
the unobserved individuals at each location
y.0 = �i yi0.

The likelihood under spatial replication

Hereafter, I assume that the observations yi are
independent when conditioned on local population
size Ni and parameters of the detection process.
Under this assumption, the sampling distribution of
the data y = {yi; i = 1,2,...,R} under most common
sampling protocols is the product multinomial

     (1)

for a sampling protocol yielding 3 observable
frequencies (e.g., 3 period removal, 2 observers,
etc). The cell probabilities, �k, are functions of
one or more detection probability parameters p
(the precise function depends on the protocol
being used) and                     (the probability that
an individual is not captured). For example, un-
der a removal sampling protocol with three re-
moval periods, the cell probabilities have the
following form when detection probability is as-
sumed constant:

�1 = p
�2 = (1 – p)p
�3 = (1 – p)2p
�0 = (1 – p)3.

For other sampling protocols, these cell prob-
abilities are different functions of various detection
probability parameters but their precise form is not
relevant in any of the following discussion.

While the product multinomial likelihood (1)
is not inherently intractable, in many practical
situations there are important considerations that
render it so. In particular, there are usually many
unknown abundance parameters (the Ni's), in
addition to the parameters that describe the
detection process. Also, local population sizes
are frequently very small and, consequently, the
sample sizes (number of captured individuals)
for each location are small. In many surveys,
there may in fact be many zero counts. One
common solution to dealing with these problems
is to aggregate the counts (i.e., pool data from
multiple sample locations). This is discussed
subsequently.

Spatial aggregation of count statistics

A common goal of many studies is estimation of
the total abundance, Ntotal, across all sampled loca-
tions. Ignoring the fact that the data are indexed by
sample location, one might focus on the likelihood
of the aggregated count statistics:
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        (2)

To be more concise, using the notation introduce
in "Notation and preliminaries" section, Eq. (2) is

     .  (3)

Interestingly, the use of aggregated counts can-
not be justified under the (correct) likelihood for the
disaggregated data given by (1) without some addi-
tional assumptions elaborated on shortly. While it
is true that Eq. (3) is the correct likelihood for the
total counts if the site–specific counts are unknown,
it is not equivalent to the likelihood based on the
disaggregated site–specific counts. That is, given
the site–specific counts yik, the totals y.k = �i yik are
not the sufficient statistics for Ntotal when the Ni are
viewed as fixed but unknown parameters.

I believe that the idea of pooling the site–specific
sufficient statistics is partially motivated by conven-
ience. The main support for use of (3) over (1) seems
to be that there are too many Ni parameters in the
joint likelihood (1) and this motivates one to consider
them as nuisance parameters. However, estimation
based on aggregated data does not appear consistent
with usual notions of the treatment of nuisance pa-
rameters. For example, integration of the nuisance
parameters from the likelihood under a suitable prior
distribution, or conditioning on sufficient statistics,
both of which are fairly conventional treatments of
nuisance parameters.

It can be demonstrated that if Ni are assumed to
have a Poisson distribution with mean �, then one
can justify aggregation (i.e., (3)) from likelihood (1).
In this sense, estimation based on aggregated
counts can be viewed as having implied a Poisson
assumption on Ni with constant mean. Importantly,
it precludes other possibilities: That Ni are over–
dispersed relative to the Poisson, or that the mean
is not constant. Thus, technical details aside, the
important reason that one should not aggregate
data is that it renders impossible the consideration
of covariate effects on both abundance and detec-
tion probability, and consideration of more complex
variance structure.

The conditional likelihood under spatial aggregation

As an alternative to using the likelihood (1), it is
common to use so–called "conditional" estimators
based on obtaining an estimate of �0 from the
conditional likelihood

       (4)

The likelihood given by (4) is motivated by noting
that the sufficient statistic for Ni is yi., and so by
conditioning on yi., Ni is removed from the problem.
Estimators based on the conditional likelihood (4)
and the "unconditional" likelihood (3) are asymptoti-

cally equivalent (Sanathanan, 1972), and both speci-
fications are commonly used in practice.

For the common parameterizations of �k (under
the sampling protocols described previously), it is
clear that the aggregated counts are sufficient sta-
tistics for those model parameters contained in �k,
and hence use of aggregated counts can be justi-
fied under likelihood (4) if interest is focused on
estimating detection probability parameters. Esti-
mation of Ntotal is then based on the assertion that
y.. = �i yi is Binomial (Ntotal, 1–�0). While this may be
true, it should be noted that it was not y.. that was
conditioned on in order to obtain Eq. (4), but rather
yi.. The neglected likelihood component is

Once again, there is no way to reformulate this
in terms of Ntotal without additional model structure
on Ni (e.g., if Ni has a Poisson distribution).

The metapopulation view

A more appealing and general solution to the
problem of spatial replication can be achieved by
regarding the collection of local populations as a
metapopulation (Levins, 1969; Hanski & Gilpin,
1977). For the present purposes, a useful opera-
tional definition of metapopulation is simply "a
population of (local) populations indexed by space".
Interest in the study of metapopulation biology has
exploded in recent years both in terms of theoreti-
cal development and applications of metapop-
ulation concepts to many taxa. Patch occupancy,
local extinction and local colonization are all
metapopulation characteristics of some theoreti-
cal and practical interest.

In the present context, that of demographically
closed systems during the time of sampling, the
local population trait in question is size, but in
general (open systems) local population mortality
and recruitment events are also of interest, the
metapopulation summaries being local extinction
and colonization probabilities, respectively. Note
that mortality at the local population level is the
aggregate of individual mortality and emigration
processes, and recruitment at the local population
level is the aggregate of individual recruitment and
immigration processes. The relationship between
local population processes and several important
metapopulation parameters are given in table 1.

Note that demographic closure during sampling
is not inconsistent with metapopulation theory
which requires that populations mix across time to
some extent. In a demographically closed system,
I view local population size as being a more
general description of patch occupancy. The event
that a patch is occupied is equivalent to the event
that Ni > 0, and patch occupancy is Pr(N > 0) for a
collection of homogeneous patches. In general,
Pr(N > 0) is a function of density, and the variation
in local population sizes as described shortly.
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Extinction and colonization events are also inti-
mately linked to local abundance (among other
things). Thus, models of variation in abundance are
of more relevance than simply as a characteriza-
tion of abundance per se.

Probabilistic characterization of metapopulations

It is natural to express the notion of a metapop-
ulation probabilistically, by imposing a probability
distribution on abundance. This is expressed by

Ni  i g(Nl�)

where "i" is read "is distributed as" and g(Nx�) is
some discrete probability density. The local
populations may be independent, or not, but con-
siderable simplicity arises when they are independ-
ent. Practically, independence means that individu-
als cannot occur in more than one local population
(i.e., the Ni's do not overlap). The generality that
this probability characterization permits is that �
may be allowed to vary spatially in a number of
ways, any discrete probability density may be con-
sidered for g(Nx�).

The main practical benefit of this metapopulation
view is that the metapopulation structure serves as a
framework for combining a large number of spatially
referenced count data surveys. In essence, this model
is a prior distribution on abundance. More generally,
I believe that the structure of the metapopulation is
of fundamental interest. That is, the goal of many (if
not most) studies of avian abundance can be formu-
lated in terms of the metapopulation distribution or
its summaries such as E[N] (density), covariate
effects (on density), etc.

The simplest example of a metapopulation model
is that resulting from a uniform distribution of indi-
viduals across the landscape. Then, aggregating
occurrence events into non–overlapping sample
areas yields Ni i Poisson (�).

This seems a natural choice for describing varia-
tion in abundance because it arises under a homo-
geneous Poisson point process, the standard null
distribution for the spatial arrangement of organ-
isms. Moreover, it is also an assumption that under-
lies many common animal sampling methods (e.g.,

distance sampling). More importantly, there is an
obvious and simple extension to accommodate a
non–uniform distribution of individuals. One can con-
sider that � varies spatially, for example:

Ni i Poisson (�I)

where log (�I) = b0 + b1xi1 where xi1 is the value of
some covariate at site i. Several further extensions
are also obvious. One is to allow for excess Poisson
variation by inclusion of a random effect, ei, as:

log (�I) = b0 + ei

where ei i Normal(0,"2). Alternatively, a more natu-
ral model of over–dispersion for Ni is the negative
binomial distribution

Ni i NegBin(�,�)

with variance � + �2/�. In any spatial sampling prob-
lem, it is natural to consider the possibility that the
spatial process is correlated. That is, that there
exists latent structure beyond any covariates that are
contained in the model. Royle et al. (2004b) consider
a model in which the log–linear model for the mean
contains a spatially indexed random effect that is
(spatially) correlated. Such structure may be appeal-
ing in many animal abundance modeling problems
where it is likely that habitat affinities are only known
imprecisely, or there is limited ability to quantify the
relevant habitat components.

Open systems

The focus of this paper is on modeling and estima-
tion of abundance in demographically closed sys-
tems. The linkage between local abundance and
patch occupancy in closed systems has been men-
tioned previously. However, similar relationships
between other metapopulation attributes and abun-
dance can also be made. For example, local colo-
nization probability is Pr(Nt+1 > 0 l Nt = 0) and lo-
cal extinction probability is Pr(Nt+1 = 0 l Nt > 0). In
fact, one can characterize Pr(Nt+1 l Nt) in general,
for each discrete state Nt, which represents an
important generalization over the current treat-
ments of the problem that characterize occurrence
as being the binary event that N > 0, extinction as

Table 1. Summary of metapopulation concepts.

Tabla 1. Resumen de conceptos metapoblacionales.

Time scale     Closure status Local population attribute      Metapopulation parameter

Within year Closed local pops. Occurrence Patch occupancy

 Size Density

Across years Open local pops. Mortality Extinction probability

Recruitment Colonization probability
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the event that Nt+1 = 0 l Nt > 0 and colonization as
the event that Nt+1 > 0 l Nt = 0. Under this coarse
characterization of metapopulation dynamics, there
is no consideration of density dependent mecha-
nisms, and variation in abundance leads to het-
erogeneity in detection probability (Royle & Nichols,
2003) which must then be modeled indirectly.
These issues are beyond the scope of this paper.

Estimation and inference

The metapopulation description of local abun-
dance as a random (spatial) process seems a
natural way to describe spatially referenced
populations and may be appealing to many ecolo-
gists. However, local abundance is never ob-
served, instead being informed by survey data
according to one of the many possible sampling
protocols described in "Notation and preliminar-
ies" section (among others). Thus, it is necessary
to incorporate this metapopulation model into a
framework that is amenable to estimation and
inference from data.

The metapopulation model is essentially a "ran-
dom effects" distribution for local abundance, Ni.
The classical approach to handling random effects
(e.g., Laird & Ware, 1982) is to base inference on
the marginal likelihood of the data, having re-
moved the random effects from the likelihood by
integration. In the multinomial sampling problems
considered here, the integrated likelihood of yi is:

Integrated likelihood has been considered under
similar models by Royle & Nichols (2003), Dorazio
et al. (2004), Royle (2004b) and Royle et al.
(2004).

The Poisson distribution seems to be the de facto
standard for the distribution g(Nl�) as it can be used
to justify analysis based on the aggregated counts,
and its motivation as a random distribution of indi-
viduals in space (a homogeneous point process) is
appealing. Subsequently, I will focus on the Poisson
case. In this case, the integrated likelihood is:

where �k are functions of p (depending on the
sampling protocol used). This does have a closed
form that is more amenable to computation. In
particular,

      (5)

This is just the product of (independent) Poisson
random variables. Maximization of (5) yields esti-

mates of � or any covariate effects on abundance,
and detection probability parameters. The fact that
� appears as a product with each �k in Eq. (5) may
lead one to question identifiability of model param-
eters. However, the �k are not freely varying param-
eters, but instead are constrained by the sampling
protocol to depend on a smaller set of detection
probability parameters. One can easily write down
consistent moment estimators for � and detection
probability parameters from Eq. (5) under the com-
mon sampling protocols.

It is a simple matter to maximize Eq. (5) numeri-
cally using conventional methods found in many
popular software packages. For example, the free
software package R (Ihaka & Gentleman, 1996)
was used in the analyses of "Applications" section
(routines are available from the author upon re-
quest).

A natural alternative to integrated likelihood
for fitting random effects models is to adopt a
Bayesian view and focus on characterizing the
posterior distribution of the model unknowns con-
ditional on the data using common Markov chain
Monte Carlo (MCMC) methods. While this is
straightforward in the present problem, I neglect
those details here. While there are considerable
philosophical differences between the two ap-
proaches, I believe that the main practical differ-
ence has to do with estimating the random ef-
fects (or summaries of them) and characterizing
uncertainty in those estimates. This is discussed
in the following section. In more complex models,
such as when additional random effects are con-
sidered in a model for �i, estimation by integrated
likelihood becomes difficult and so adopting a
Bayesian formulation of the problem might be-
come necessary (see Royle et al., 2004b).

Estimating abundance and related quantities

The MLE of �, , is an estimate of the prior mean
abundance at a site. Or, in the case where �i varies

(e.g., covariates), one obtains  as a function of
abundance covariates. To estimate Ntotal note that,
under the Poisson assumption on Ni, Ntotal i Poisson
(R�) and so

where  is the MLE from the integrated likelihood.
Generally, interest may not be in the estimated

prior means, but rather in estimating the realized
abundance either for the collection of sample loca-
tions, or aggregated in some manner (over some
spatial domain, or a collection of sample sites).
For this, the classical method of estimating ran-
dom effects is referred to as Best Unbiased Pre-
diction (BUP). That is,

where  is used in place of �. This is a simple
calculation (see Royle, 2004a for an example).
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The Bayesian treatment of the problem is more
general in the sense that variation in  is directly
considered. For example, the Bayes estimator of
Ni is the posterior mean:

      .

In effect, the dependence on � has been re-
moved by integration. Consequently, one could ex-
pect  to be more variable than  in practical
sample sizes.

Estimates of patch occupancy, say ), can also
be obtained from these random effects models.
For example, under the Poisson model for Ni,
) = 1– e–�.

Goodness–of–fit and model selection

One convenient implication of the closed form like-
lihood given by Eq. (5) is that one can use conven-
tional deviance statistics for Poisson data to assess
goodness–of–fit (see Dorazio et al. [2005] and
Royle et al. [2004a] for examples). Under negative
binomial models, or when the likelihood is not
multinomial, bootstrap procedures appear to be
necessary (Dorazio et al., 2005; Royle, 2004b;
Dodd & Dorazio, in press). Model selection based
on integrated likelihood may be carried out using
AIC (Burnham & Anderson, 1998) regardless of the
form of the likelihood.

Applications

The modeling framework presented here can be
easily applied to any of the common bird sam-
pling protocols described previously. To illus-
trate, we consider application to data collected
using conventional point count data, and also
data collected according to temporal removal
protocol. A comprehensive analysis of a large–
scale capture–recapture data set is considered
by Royle et al. (2004b) and an application to
distance sampling data is given by Royle et al.
(2004a). Dodd & Dorazio (in press) provide a
comprehensive integrated–likelihood analysis of
frog count data collected according a point count-
ing protocol.

Point counts

Point counts are often considered to be of mar-
ginal value to statisticians with an interest in
conventional modeling of marked animal data
because there is a widespread misperception that
information on abundance cannot be disentan-
gled from detection probability. Royle (2004)
showed that if point counts are spatially and
temporally replicated within a demographically
closed system, then the integrated likelihood
methods described in "Estimation and inference"
section can be used to effectively model both
detection and abundance effects.

An important distinction between the point count
protocol and the others considered previously is
that temporal replication is necessary to estimate
detection from simple point counts. This is be-
cause given simple binomial counts, yi, with index
Ni and probability p, where Ni are independent
random variables from g(N l �), p appears as a
product with the location parameter of g in the
integrated likelihood. For example, in the Poisson
case with mean �, the marginal distribution (the
integrated likelihood) of yi is Poisson with mean
p�. Royle et al. (unpublished report) gave a heu-
ristic explanation to demonstrate that additional
information from spatial and temporal replication
is available. In particular, a moment estimator for
p is simply the correlation between counts made in
successive sample periods. i.e.,

(6)

for counts made at two sampling occasions. Then,
 is .

More formally, the integrated likelihood under
the replicated point count protocol is

       (7)

p can vary as a function of covariates, and even
temporally, but we neglect that generality here.
Note that Eq. (7) does not close, contrary to the
multinomial likelihood case that yields Eq. (5).

Data considered here are a subset of those
analyzed by Royle (2004a) consisting of replicated
point counts at 50 stops along a North American
Breeding Bird Survey route. The point counts were
replicated 11 times within approximately a one month
period during the breeding season. Here, we con-
sider only the first two counts for all 50 stops.
Poisson and negative binomial models were consid-
ered for abundance. Under the Poisson model, the
moment estimates of p and � were also computed (
and  based on Eq.(6)). For comparison, an abun-
dance index being the mean (across sites) of the
maximum count (over the two samples) was also
computed. The 4 species considered are: Ovenbird
(Seiurus aurocapillus), Hermit thrush (Catharus
guttatus) Woodthrush (Hylocichla mustelina) and
American robin (Turdus migratorius). Results of the
model fitting are given in table 2, along with AIC
scores (Burnham & Anderson, 1998).

Generally, the overdispersed negative binomial
appears favored (except for the Hermit thrush).
Estimated mean abundance differs considerably
from that reported by Royle (2004) based on
analysis of all 11 replicates. This is consistent with
lack of closure over the longer time period or
higher rates of temporary emigration which is why
I have restricted attention to the first two replicate
observations here.

The main purpose of this example is to dem-
onstrate that it is feasible to estimate abundance
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from simple point counts while controlling for
(i.e., modeling) detection probability. In point count
sampling, there is some advantage to reducing
the time interval between counts to the extent
possible in order to minimize temporary emigra-
tion which leads to some complication interpret-
ing  as density (applicable to a known area).
Thus, consecutive counts (e.g., consecutive three
minute point counts) may be the best strategy for
implementing the point count estimator.

Removal counts

Next we consider avian point count data collected
in Frederick County, Maryland. The data were
collected at 70 locations within a large forest tract,
according to a conventional removal sampling
protocol (Farnsworth et al., 2002) with four sam-
ple intervals of length three minutes. The main
objective was to evaluate the effect of two habitat
covariates: understory foliage cover (UFC) and
the basal area of large trees (BA). See Royle et al.
(2004) for further description and an alternative
analysis of some of these data.

We focus here on data for the Ovenbird (Seiurus
aurocapillus). The data for each sample point are yi
= (yi1, yi2,yi3,yi4) where yik is the number of males
first seen in interval k. For this illustration, we
assume that detection probability, p, is constant so
that the multinomial cell probabilities are:

�1 = p
�2 = (1 – p)p
�3 = (1 – p)2p
�4 = (1 – p)3p

Several covariates were collected that are thought
to influence p (e.g., time of day) and a more
complete analysis of these data is in progress.
Here, we consider only the habitat effects on abun-
dance. That reasonable covariates on both detec-
tion and abundance can be identified is important

motivation for considering the mixture models elabo-
rated on in "Estimation and inference" section.
Removal data from several sites are shown in
table 3, highlighting the typical small sample data
sets that arise from local scale bird counting.

Models were fit using the Poisson metapop-
ulation model assuming that

  Ni i Poisson (�i)

where

          log (�i)  = b0 + b1UFCi + b2BAi

Results for several models are summarized in
table 4, including AIC scores for evaluating the
relative merits of each model.

For example, under the constant model
 = 1.138 (SE = 0.093), or 1.138 male ovenbirds

per point count sample. Point counts in this study
were of radius 100 m, so one could interpret this
as density if so inclined. More importantly, the
habitat effects appear important so that density
changes as a function of UFC and BA. There is a
large positive effect of UFC and negative effect of
BA. Because ovenbirds are ground nesters, and
therefore would benefit from protection afforded
by understory foliage, these results appear sensi-
ble. Also, the fact that the model containing both
effects was not favored is not unexpected be-
cause UFC and BA are negatively correlated.
These results are broadly consistent with those
reported by Royle et al. (2004a) obtained using a
distance sampling protocol (data were collected
in a manner consistent with multiple protocols).

Conclusions

In this paper I have considered the problem of
modeling spatially replicated avian count data that
are collected according to many common sam-

Table 2. MLEs and AIC for Poisson and negative binomial hierarchical models fitted to the avian
point count data:  and  are the Poisson moment estimates.

Tabla 2. Estimaciones de los parámetros de máxima verosimilitud (MLE) y criterio de información de
Akaike (AIC) para moldelos Poisson y modelos jerárquicos binomiales negativos ajustados a los datos
de recuentos puntuales:  y  son las estimaciones del momento de Poisson.

  Poisson Negative binomial

Species              Index                       AIC                                   AIC

Ovenbird 0.96 0.53 1.25 0.43 1.53 215.68 0.33 2.01 1.69 213.70

Hermit thrush 0.10 0.55 0.13 0.55 0.13 47.82 0.55 0.13 inf 49.82

Woodthrush 0.52 0.60 0.63 0.58 0.65 150.59 0.53 0.72 0.78 147.44

Am. Robin 1.12 0.46 1.65 0.38 2.02 241.73 0.17 4.53 1.21 235.16
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pling protocols. These include methods that yield
a multinomial sampling distribution including con-
ventional capture–recapture methods, multiple ob-
server sampling, temporary removal and even sim-
ple point counts. One important statistical consid-
eration is that data are frequently sparse (low
counts and many zeros), owing to generally low
densities of most breeding birds, and small sample
areas. In addition, the likelihood under spatial replica-
tion may contain a large number of abundance
parameters (Ni for each sample location) that render
it intractable using conventional methods.

Conventional methods of analyzing bird count
data often focus on estimating total abundance

Table 4: Results of models fit to ovenbird counts obtained under a temporary removal protocol.

Tabla 4. Resultados de los modelos ajustados a los recuentos del tordo mejicano obtenidos con arreglo
a un protocolo de extracción temporal.

Model                          p                 b0                   UFC                  BA AIC

Constant 0.572 0.130  303.86

+ UFC 0.572 0.113 1.859  303.32

+ BA 0.572 0.106 –0.829 302.35

+ UFC + BA 0.572 0.102 1.042 –0.643 303.72

Table 3: Ovenbird removal data (number first
seen in four consecutive intervals).

Tabla 3. Datos de extracción del tordo mejicano
(primer número observado en cuatro intervalos
consecutivos).

 
       t = 1 t = 2   t = 3    t = 4

point 34 0 0 0 0

point 35 0 0 0 0

point 36 2 0 1 0

point 37 1 0 0 0

point 38 0 1 0 0

point 39 1 1 0 0

point 40 1 0 0 0

point 41 2 1 0 0

point 42 0 1 0 0

point 43 1 2 0 0

point 44 0 0 0 1

point 45 1 0 1 0

over the collection of sample locations. Under this
limited treatment of the problem, variation at the
level of the sample location is, in effect, averaged
out. Covariates cannot be considered, and one
must consider spatial scale in deciding how to
aggregate data. Importantly, aggregation may only
be justifiable under certain spatial homogeneity
assumptions. For example, if local abundance (at
the level of the sample locations) is assumed to be
Poisson with constant mean, then aggregation can
be justified. However, this may not be a reasonable
assumption in many problems.

Alternatively, the spatial attribution of the data is
an important consideration in many studies, and
can be exploited to develop more general models
for describing abundance. For example, the goal of
many studies is to estimate abundance covariate
effects. And, factors that influence detectability may
also vary among sample locations. Explicitly ac-
knowledging spatial variation in local abundance
facilitates investigation of these possibilities.

The solution to the problem of modeling spa-
tially replicated data proposed here is to view local
abundance as a random process. Then, attention
can be focused on developing a model for the
variation in local abundance free of detection prob-
ability considerations. This is appealing in the
context of familiar metapopulation ideas that seek
to characterize the structure among spatially refer-
enced (local) populations that constitute the
metapopulation. Taken together, the data model
(the multinomial likelihood) and metapopulation
model define a simple hierarchical model for which
formal and rigorous methods of analysis are pos-
sible. For example, one can estimate parameters
and conduct inference based on the integrated
likelihood (having removed the random effects by
integration). Alternatively, Bayesian analysis based
on the posterior distribution is relatively straight-
forward.

The generality of the proposed modeling strat-
egy is appealing. Mean abundance (� under the
Poisson model) may be parameterized in terms of
additional parameters that describe variation in
the Poisson mean (and hence abundance), and
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there is no need even to restrict attention to a
Poisson random effects distribution. Such gener-
ality is easily dealt with formally within the context
of the hierarchical model specification.

Two brief examples were given to demonstrate
how a classical analysis of such models might
proceed. The first example made use of simple
point counts (replicated temporally) and consid-
ered a simple constant detection model and both
Poisson and negative binomial models for local
abundance. In the second example, data collected
according to a removal sampling protocol were
considered. In that example, habitat covariates
were considered as possible effects on local abun-
dance.

Extension to demographically open systems

Considerable generality can be achieved by consid-
ering extensions of hierarchical abundance models
to systems that are demographically open, such as
might occur if sampling is conducted during the
breeding season in multiple years. There are several
interesting "open population" situations that may be
considered: (1) Many monitoring programs that gen-
erate counts in multiple years may not yield informa-
tion on individual animals across years. This is
common of most "point counting" surveys. In this
situation, a simple metapopulation model structure
such as Ni,t i Poi(�t Ni,t–1) may be useful for integrat-
ing data across years. Moreover, they facilitate a
characterization of metapopulation dynamics that
represents a generalization over methods consid-
ered by, for example, MacKenzie et al. (2003) that
are based on detection/non–detection data; (2) A
common lack of closure is due to the phenomenon
of "temporary emigration". In this case, let Mi  be
the size of some super–population located at sam-
ple location i. Let Ni,t i Bin(Mi,&) be the number of
individuals available for sampling during occasion
t at site i. Finally, let yi,t be the multinomial data
with index Ni,t collected according to one of the
standard sampling protocols. Note that Ni,t may be
removed by integration so that, marginally, yi,t;
t = 1,2,... are multinomial random variables with
index Mi and cell probabilities &�k. Consequently,
the joint likelihood of the data is a product
multinomial, similar to that described in "Point
counts" section. However, here the temporal repli-
cation, combined with some protocol other than
simple point counts, allows estimation of the addi-
tional parameter &, which is 1 minus the temporary
emigration probability; (3) The third type of open
scenario is that in which there exists encounter
information on individual animals across years
such as that arising from sampling based on
networks of mist net stations. In this case, Nt must
be decomposed into a survival component and a
recruitment component where the survival compo-
nent is Bin(Nt–1, &t) and the recruitment component
is Poi(Nt–1 �t). Note that individual encounter infor-
mation is directly informative about & whereas a
spatial model for abundance is informative about

the total of the survival and recruitment processes.
It stands to reason that such models will yield
improved estimates of (local) survival and recruit-
ment parameters.
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