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Abstract
Costs of detection bias in index–based population monitoring.— Managers of wildlife populations commonly
rely on indirect, count–based measures of the population in making decisions regarding conservation,
harvest, or control. The main appeal in the use of such counts is their low material expense compared to
methods that directly measure the population. However, their correct use rests on the rarely–tested but
often–assumed premise that they proportionately reflect population size, i.e., that they constitute a
population index. This study investigates forest management for the endangered Red–cockaded Wood-
pecker (Picoides borealis) and the Wood Thrush (Hylocichla mustelina) at the Piedmont National Wildlife
Refuge in central Georgia, U.S.A. Optimal decision policies for a joint species objective were derived for two
alternative models of Wood Thrush population dynamics. Policies were simulated under scenarios of
unbiasedness, consistent negative bias, and habitat–dependent negative bias in observed Wood Thrush
densities. Differences in simulation outcomes between biased and unbiased detection scenarios indicated
the expected loss in resource objectives (here, forest habitat and birds) through decision–making based on
biased population counts. Given the models and objective function used in our analysis, expected losses
were as great as 11%, a degree of loss perhaps not trivial for applications such as endangered species
management. Our analysis demonstrates that costs of uncertainty about the relationship between the
population and its observation can be measured in units of the resource, costs which may offset apparent
savings achieved by collecting uncorrected population counts.
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Resumen
Costes de los sesgos de detección en el monitoreo de poblaciones basado en índices.— Los gestores de
poblaciones de fauna silvestre a menudo toman decisiones relativas a la conservación, recolección o
control a partir de medidas indirectas de la población basadas en recuentos. El principal atractivo que
presenta este tipo de recuentos son los bajos costes de material, en comparación con otros métodos que
miden la población de forma directa. Sin embargo, el correcto uso de los mismos depende de una premisa
que suele darse por sentada, aunque rara vez se comprueba, y que consiste en suponer que reflejan
proporcionalmente el tamaño de la población; es decir, que constituyen un índice poblacional. El presente
estudio investiga la gestión forestal de dos especies en peligro de extinción: el pájaro carpintero de cresta
roja (Picoides borealis) y el zorzal mustelino (Hylocichla mustelina) en la Reserva Nacional de Animales
Salvajes de Piedmont, en Georgia central, Estados Unidos. Se simularon varias políticas de conservación
bajo escenarios referentes a las densidades del zorzal mustelino insesgados, con un consistente sesgo
negativo y con un sesgo negativo dependiente del hábitat. Las diferencias obtenidas con respecto a los
resultados de simulación entre los escenarios de detección sesgados y los no sesgados indicaron la
pérdida prevista en los objetivos en materia de recursos (en este caso, el hábitat y las aves del bosque) a
través de una toma de decisiones basada en los recuentos poblacionales sesgados. Teniendo en cuenta los
modelos y la función de los objetivos que hemos empleado en nuestro análisis, las pérdidas previstas
ascendieron al 11%, lo que supone un porcentaje bastante significativo en aplicaciones tales como la
gestión de especies en peligro de extinción. Nuestro análisis demuestra que los costes de incertidumbre
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acerca de la relación entre la población y su observación pueden medirse en unidades del recurso dado;
es posible que estos costes compensen los ahorros aparentemente conseguidos mediante la recopilación
de recuentos poblacionales no corregidos.
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more efficient than alternative approaches.
Our study analyzes this problem in the context of

forest management on the Piedmont National Wild-
life Refuge (PNWR) in central Georgia (U.S.A.).
Here, the joint objective of management is provi-
sion of habitat for an endangered species, the Red–
cockaded Woodpecker (Picoides borealis), and the
maintenance of a population of a shrub–nesting
neotropical migratory bird, the Wood Thrush
(Hylocichla mustelina). However, response of the
Wood Thrush population to silvicultural actions is
largely unknown, therefore the degree to which
management for the woodpecker conflicts with
management for the Wood Thrush is uncertain. We
built a dynamic optimization model in which we
specifically addressed this form of structural uncer-
tainty. We also addressed uncertainty in the con-
stancy of Wood Thrush detection rate among habi-
tats. Simulating the decision making process under
alternative forms of the optimization model yields a
statistic, the expected value of information, that
represents the opportunity cost of management
under population measurement uncertainty. Although
the models we will describe lack certain details that
would make them useful in a management applica-
tion, they are sufficiently useful for the purpose of
illustrating the idea that real management costs
may be incurred whenever there is considerable
uncertainty about what an unadjusted population
count is measuring.

Methods

Study area and description of management

The PNWR is a 14,136–ha unit of the U.S. National
Wildlife Refuge System. The site supports a sec-
ond–growth mixed pine (Pinus taeda, P. echinata)
and hardwood (Quercus spp., Carya spp.) forest
that regenerated naturally on severely eroded farm-
land abandoned in the 1930s (Gabrielson, 1943;
Czuhai & Cushwa, 1968). Forest management is
directed towards the maintenance of all native flora
and fauna, sustenance of important ecosystems,
and provision of public recreation, including wildlife
viewing and sport harvest of some wildlife species
(U.S. Fish and Wildlife Service, Piedmont National
Wildlife Refuge, URL: http://piedmont.fws.gov).
PNWR is also a designated recovery site for the
Red–cockaded Woodpecker (U.S. Fish and Wildlife
Service, 2000). The woodpecker’s preferred foraging
and breeding habitat consists of pure, open stands
of mature (80 or more years) pine with a fire–
maintained herbaceous understory (Loeb et al., 1992).
But these forest habitats have become highly frag-
mented or have disappeared altogether, particularly
since the early 20th century, as intensification of
management on industrial forest lands emphasized
shorter timber rotations and as exclusion of fire
from all forest lands permitted increased hardwood
succession (Ligon et al., 1986). Because the PNWR
is identified as a woodpecker recovery site, forest

Introduction

Managers of animal populations and wildlife habitats
often rely on indirect measures of population abun-
dance to support decision making in conservation,
harvest, or control. For example, conservation deci-
sions made by an agency may be based on numbers
of singing birds detected during a roadside survey
rather than on a direct estimate of population abun-
dance. The use of such count–based measures is
common because they are popularly perceived to be
substantially less expensive to collect than data that
allow the direct estimation of population abundance,
while almost as informative.

But this perception is frequently unfounded. An-
cillary data that permit direct estimation of abun-
dance (or density) often can be collected at mar-
ginal additional expense to that of the original
survey (Anderson, 2003): counts by paired observ-
ers (Nichols et al., 2000) and distances to subjects
(Buckland et al., 2001) are two of many types of
such data sources (Williams et al., 2002). More
importantly, the fact that bias in the count (as a
measure of population status) is almost never quan-
tified renders its information content questionable
(Anderson, 2001, 2003). The use of an unadjusted
count as a measure of relative population abun-
dance is valid only if the measure is strictly propor-
tional to population size. In other words, the ex-
pected detection rate of the population (i.e., aver-
age of count / population) must remain constant
over all conditions for the count to constitute a valid
index (Anderson, 2001; Williams et al., 2002). How-
ever, this assumption is rarely tested in practice,
and where it has been tested, detection rate is often
found to vary (Williams et al., 2002). Factors asso-
ciated with variation in detection rate include habi-
tat features, environmental conditions, sampling
and observer characteristics, and population abun-
dance itself (Verner, 1985; Anderson, 2001).

In conservation decision making, one possible
consequence of using counts unadjusted for detec-
tion rate is that decisions that appear best (i.e.,
optimal for some objective outcome) on the basis
of such counts may not be the same as those that
would have been chosen had true abundance been
known or estimated. Therefore, an opportunity cost,
measurable in units of the resource, may be asso-
ciated with the use of unadjusted count data. The
opportunity cost could be commensurate with, or
even greater than, the cost of obtaining the ancil-
lary measurements to permit direct abundance es-
timation. For some problems in wildlife conserva-
tion, for example, endangered species recovery,
opportunity costs may not be inconsequential. Thus,
the total cost of a monitoring program is equal to
the cost of collecting the unadjusted counts plus
the expected opportunity cost of either failing to
estimate detection probability or establishing its
constancy. If opportunity costs can be shown to be
small over a range of plausible departures from the
constant detection probability assumption, then the
collection of unadjusted counts may be justified as

http://piedmont.fws.gov
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management is oriented towards increasing the abun-
dance of this species. To this end, forest managers
conduct aggressive regimes of thinning and regen-
eration cutting, prescribed burning, and mechanical
vegetation removal to promote the creation of pure,
open stands of mature pine with a herbaceous
understory and reduced hardwood midstory (U.S.
Fish and Wildlife Service, Piedmont National Wild-
life Refuge, Habitat Management Plan, 1982; unpub-
lished report).

Whereas these conditions are most favorable
for production and survival of woodpeckers, their
suitability for other forest wildlife species is mostly
unknown. In particular, reductions in the hard-
wood midstory and the overstory canopy would
be expected to be detrimental to the persistence
of the Wood Thrush, a neotropical migrant spe-
cies commonly associated with dense understory
and midstory conditions of closed–canopy forest
interiors (Weaver, 1949; Hamel et al., 1982; Roth
et al., 1996). This species of management con-
cern (Hunter et al., 1992) is thought to be declin-
ing over its range (Peterjohn et al., 1995), with
fragmentation of interior forest conditions across
the eastern U.S. implicated (Whitcomb et al.,
1981; Temple & Cary, 1988; Hansen & Urban,
1992). Therefore, a concern for refuge managers
is that silvicultural actions targeted for the wood-
pecker do not cause excessive harm to
populations of nontarget species such as the
Wood Thrush.

Comparison of Wood Thrush population param-
eters on control and silviculturally–treated forest
compartments, both pre– and post–treatment, found
no detectable effect of treatments on population
growth of the Wood Thrush at PNWR (Powell,
1998; Powell et al., 2000). In fact, point estimates
of many parameters and of the population growth
rate were greater following treatments than before
(Powell, 1998). However, parameter estimates had
considerable sampling variability, therefore defini-
tive conclusion of a treatment effect remains some-
what equivocal (Powell et al., 2000).

Decision model

We linked a model of annual Wood Thrush popula-
tion dynamics to a forest management model, where
both models were deterministic. The forest model
expressed the quantities of and transitions among
three PNWR forest seral types: pine regeneration
(F1, age 0–20), mature mixed pine–hardwood (F2,
age 20–90), and open pine forest suitable for wood-
pecker utilization (F3, age 20–90). Although pine
habitat younger than approximately age 40 is sel-
dom used by foraging woodpeckers (Epting et al.,
1995) and age 16 is considered the transition point
between the regeneration class and the poletimber
(mature) class, our use of these assumptions greatly
simplified the model and did not diminish its in-
structional value. At any time t, the proportional
amounts of forest in each seral type was indicated
in the vector

ft = [ XF1(t), XF2(t), XF3(t)]'

In the absence of forest management, annual
rates of natural transition from the mature classes
into the regeneration class were $12 = $13 = 1/70,
merely the inverse of the length of the mature age
class (fig. 1A). Similarly, the graduation rate from
the 20–year regeneration class to the F2 class was
$21 = 1/20. When unmanaged, F3 forest can be-
come unsuitable for woodpecker use in as few as 4
years (Piedmont National Wildlife Refuge, 1982,
unpublished report), therefore, we assumed that F3
forest is lost at the rate of $23 = 1/4 per year in the
absence of management.

However, management can cause regeneration
to exceed the natural rates (through regeneration
cutting), can effect the transfer of forest from the F2
class into the F3 class (thinning and burning), and
can reduce attrition from F3 into F2 (thinning and
burning) (fig. 1B). Regeneration cuts from types F2
and F3 in year t are denoted d12t and d13t, respec-
tively, creation of new F3 habitat is denoted d32t,
and re–treatment of F3 habitat is denoted d23t. The
thinning–burning decisions are expressed in the
transition matrix:

where columns and rows represent pre– and post–
transition states, respectively, and the regeneration
decisions are expressed as follows:

Given the decisions dijt at time t, the state of the
forest ft is transformed to a new state ft+1 by first
applying the thinning–burning treatments, then the
regeneration treatments:

ft+1 = Ut Vt ft

We used alternative forms of a simple exponen-
tial growth model to express our uncertainty regard-
ing dynamics of the Wood Thrush population oc-
curring in habitats considered favorable (designated
F) and unfavorable ( ). Under one alternative, we
assumed that the population of Wood Thrushes in
F3 habitat increased (i.e., F = F3), whereas that in
F2 habitat decreased (  = F2). We used growth
rates for the favorable (�F = 1.012) and unfavorable
(  = 0.949) habitat quality types consistent with
point estimates provided by Powell et al. (2000) for
treated and untreated areas, respectively. However,
because of high sampling variability, their findings
also were consistent with the converse proposition
that habitat F2 was favorable and habitat F3 was
not. Therefore, the alternative population model
used the same parameter values for �F and  as
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Fig. 1.  Model of dynamics among regeneration (F1), mature untreated (F2), and mature forest treated
for Red–cockaded Woodpecker use (F3) at PNWR. Portions of the mature forest naturally regenerate
every year, and mature classes are augmented by recruitment from the regeneration class. In the
absence of management (A), the treated stage F3 reverts back to the F2 stage and ultimately
disappears. However, management (B) can reduce this attrition either through treatment of F2 forest
or re–treatment of F3 forest. Furthermore, regeneration rate can be increased by cutting from the
mature classes.

Fig. 1. Modelo de dinámica entre la regeneración (F1), bosque maduro no tratado (F2), y bosque
maduro tratado para su uso en el pájaro carpintero de cresta roja (F3) en PNWR. Algunas áreas del
bosque maduro se regeneran anualmente de forma natural, y las clases maduras se aumentan
mediante el reclutamiento procedente de la clase de regeneración. En ausencia de gestión (A), la fase
tratada F3 revierte a la fase F2 y finalmente desaparece. Sin embargo con gestión (B) se puede
reducir este desgaste, bien a través del tratamiento del bosque F2 o del retratamiento del bosque F3.
Además, la tasa de regeneración se puede incrementar reduciendo las clases maduras.
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before, but switched assignment of F2 and F3 as
the unfavorable and favorable habitats. Because
Wood Thrushes are not known to commonly use
areas of pine regeneration (Roth et al., 1996), we
assumed that seral type F1 provided no suitable
habitat for Wood Thrushes and therefore ignored
this type in the population models. The general
expression of the population model was:

Nq(t+1) = �q Nq(t) = �q �q(t) Xq(t+1), q = F, ;

the latter form expressing population size N at time
t+1 in terms of bird density � in habitat quality type
q at time t and projected proportion X of habitat
quality type q at time t+1.

Thus, the state of the modeled system is de-
scribed at any time t by the amount of forest in
each seral stage and by the density of Wood
Thrushes in types F2 and F3. Given a selection of
one of the population models, the steps of the
model were as follows: (1) obtain the current forest
state (proportional amount of each seral type) and
current Wood Thrush densities within types; (2)
obtain the current set of forest management deci-
sions given those states; (3) project the state of the
forest to the next decision period, given decision
set; (4) calculate bird abundances and densities at
next decision period, given population model and
future forest state; and (5) move to next decision
period, repeat 1–5.

Optimization

For both population models, we used dynamic pro-
gramming to search for a stationary, state–specific
optimal decision policy for a suitable conservation–
based objective function (Dreyfus & Law, 1977;
Williams et al., 2002). We converted expected Wood
Thrush abundance at the next time period to a
value bounded between 0 and 1:

where the constants in the function were based on
a minimum acceptable density of 0.05 pairs/ha and
a maximum satisfying density of 2.0 pairs/ha over
the entire refuge. The objective function was

Jt = XF3(t + 1)0.5 Wt
 0.5

i.e., an equally–weighted geometric average of fu-
ture proportion of F3 habitat (for woodpecker popu-
lation viability) and future Wood Thrush abundance
value. If decisions drive either component of this
objective function to zero, then Jt = 0. Because both
XF3(t + 1) and Wt are bound between 0 and 1, Jt is
also bounded between 0 and 1. Dynamic program-
ming seeks those decisions that maximize the sum
of this return value over an infinite time frame of
decision making (       ). The decision policy found
by dynamic programming will be state–dependent,

that is, a set of optimal decisions is associated with
each possible system state. A useful decision policy
should also be stationary, that is, it should be
invariant with regard to which time period a deci-
sion is to be made.

We used program ASDP (Lubow, 1995, 1997) to
perform the optimization. Because of the unit–sum
constraint, compositional state variables such as
amounts of forest in three habitat types are not
easy to represent in a rectangular matrix of state
variable combinations. For example, if XF1 and XF2
are both allowed to range between 0.0 and 1.0,
then the combination (XF1, XF2) = (0.6, 0.2) is a
valid system state (XF3 = 0.2, by subtraction),
whereas (XF1, XF2) = (0.6, 0.5) is not. We defined a
two–part transformation that expressed the three
dependent compositional states in terms of two
independent integer states. First, integer indices
I = 1,2,...,11 are converted to logits L through a
power function:

L = p [ (I – a) / b ]q

where a, b, p, and q are constants chosen to
appropriately center, scale, and shape the relation-
ship. Next, the logits are converted to forest type
proportions in the usual way:

Xi = exp (Li) / [1 + 3exp (Lj)]

Furthermore, because we expected the decision
policy to be most sensitive to the Wood Thrush
population states when densities were low rather
than high, we used square–root transformations of
observed densities as state variables.

Program ASDP processes only discrete values
of state and decision variables. We discretized both
forest composition state variables into 9 levels
each and both Wood Thrush state variables into 11
levels each (observed density ranging between 0–
2.3 pairs/ha, approximately), yielding 9,801 state
combinations. Decisions d32, d12, and d13 were
each discretized into steps of 0.2 over the range
0.0–1.0, and decision d23 was discretized into steps
of 0.05 over the range 0.0–0.25. The highly
nonlinear structure of the state variables caused
overestimates of the objective values under ASDP’s
linear interpolation and extrapolation features.
Though the errors were slight, the compounding of
errors over the course of the program’s iterations
caused difficulty in convergence to stationary poli-
cies. Therefore, we imposed a small (0.999) dis-
counting rate on the objective value and termi-
nated the program after 100 iterations, a point at
which the number of optimal decisions changing
between iterations reached a minimum (16–19 of
9,801 states) and where objective values had not
appreciably exceeded their mathematical bounds.

Computation of expected opportunity costs

Our interest was in assessing the outcome of deci-
sion making based on observed states of the system
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(i.e., observed Wood Thrush densities obtained from
unadjusted counts) that may or may not correspond
to unobservable true states. We considered four
plausible cases of how the relationship between
observed densities and true densities of Wood Thrush
may vary among habitats: (1) birds are perfectly
detectable in F2 and F3 habitats (detection rate = 1.0),
(2) birds are equally detectable in F2 and F3 habi-
tats, but not perfectly detectable (detection rate = 0.5),
(3) birds are more detectable in F3 habitat (detection
rate = 0.7) than in F2 habitat (0.3), and (4) birds are
more detectable in F2 habitat (detection rate = 0.7)
than in F3 habitat (0.3). Our focus, then, was the
assessment of the quality of decision making for
cases 2–4 as if case 1 was the operative mode of
detection.

For each population model and its associated
optimal decision policy, we simulated decision mak-
ing under each detection model over a 100–year
time period. We chose five starting forest states for
each simulation: (1) high F1 (initial forest composi-
tion ft' = [0.60, 0.35, 0.05]), (2) balanced age class /
low F3 (ft' = [0.22, 0.73, 0.05]), (3) balanced age
class / high F3 (ft' = [0.22, 0.38, 0.40]), (4) low F1 /
low F3 (ft' = [0.05, 0.90, 0.05]), and (5) low F1 / high
F3 (ft' = [0.05, 0.55, 0.40]). For starting Wood
Thrush density states, we chose 0.5 pairs/ha for
both F2 and F3 habitats. Because the decision
models were all deterministic, multiple simulation
runs were not required.

Cumulative 100–year values of J were obtained
for each detection scenario, annualized (divided
by 100), and compared to the annualized cumula-
tive J value for the model of perfect detection.
Thus, three comparisons were available for each
population model and starting state. If jA – jB
represents the difference in annualized J values
for two scenarios A and B, then the maximum
difference attributable to either the XF3(t+1) or the
W components of the objective function (when the
other component is held fixed) is 1 – (jB / jA)2.
Expressed as a percentage, this value can be
interpreted as the maximum percent loss, or par-
tial opportunity cost, incurred by one of the re-
sources under suboptimal management. For ex-
ample, a partial opportunity cost of 10% implies
that either woodpecker habitat amount or Wood
Thrush abundance is reduced by as much as 10%
if decision making is made under an inappropriate
detectability assumption. Also, we averaged the jA
– jB differences over the alternative detection sce-
narios to represent expected resource cost under
complete uncertainty with respect to the detection
models. This statistic closely resembles the value
of information (Lindley, 1985), an estimate of ex-
pected loss when one lacks the information to
distinguish among alternative expected outcomes
of decision making (here, alternative detection
scenarios). For example, an expected partial op-
portunity cost of 10% implies that the sacrifice in
either woodpecker habitat or Wood Thrush abun-
dance is expected to average 10% over several
plausible but uncertain detection relationships.

Results

In the population model that considered F3 as
favorable habitat for Wood Thrushes, optimal
annualized cumulative returns for the model of
perfect detection ranged 0.412–0.466 over the five
starting states (table 1). Corresponding values for
the models of equal detection and higher detection
in F3 were comparable, even greater in some cases
(table 1). This outcome suggests that our decision
policy was suboptimal, likely a consequence of
difficulties in the optimization routine described ear-
lier. However, the returns under the alternative de-
tection models are in close agreement, suggesting
that, at least for these two models of imperfect
detection, management based on uncorrected
counts or densities was as profitable as manage-
ment under perfect detection.

However, the model of lower detection in F3
generated lower annualized returns than did the
model of perfect detection (table 1; detection
model M3). Differences in returns appear small
(0.007–0.014), but they translate into partial oppor-
tunity costs of 3–6% for either of the resource
components (table 1). Averaging the differences
over the three models of imperfect detection sug-
gests expected partial opportunity costs of 1–3%
under model uncertainty (table 1).

For the model proposing F2 as favorable habitat,
annualized returns for the model of perfect
detectability ranged 0.236–0.268 (table 1). Simula-
tion of each of the models of imperfect detection
provided lower annualized returns in all cases (ta-
ble 1). The smallest differences in returns occurred
for the model of lower detection in F2 (0.0–0.003),
intermediate differences were observed for the model
of equal detectability between habitats (0.002–
0.008), and the greatest differences occurred for
the model of lower detection in F3 (0.003–0.015)
(table 1). The largest value of partial opportunity
cost was 11% (table 1). Averaging over all the
models of imperfect detection yielded 2–6% in ex-
pected partial opportunity cost (table 1).

Discussion

Whether unadjusted counts constitute reliable indi-
cators of wildlife population abundance has been
an issue of recent intensive debate (Thompson et
al., 1998; Hutto & Young, 2002; Engeman, 2003;
Anderson, 2003). Perhaps one reason that the
arguments persist is that the extra costs associated
with collecting the ancillary data to estimate detec-
tion rate are tangible and easy to perceive, whereas
consequences of decision making based on faulty
detectability assumptions are not. This "invisible
cost" of misled management may be inappropri-
ately taken by some as evidence that such costs
are negligible and perhaps contributes to a compla-
cency toward the problem of unmeasured detection
biases. Our analysis of a very simple population
model under quite reasonable alternative patterns
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of detection bias demonstrates that uncertainty with
respect to detectability results in some degree of
opportunity cost that is measurable in units of the
resource.

The opportunity costs we observed were small
(all partial costs < 11%), but two points are worth
noting. First, opportunity costs will certainly vary ac-
cording to choice of population model, detection model,
and objective function. For example, partial costs
become as large as 24% if we reduce detection rate
from 0.3 to 0.1 in one of the detection models and
increase its counterpart rate from 0.7 to 0.9. Second,
a given cost may have different implications in differ-
ent management settings. For example, an 11% cost
in habitat or population value may be inconsequential
in many management settings, but not in all, particu-
larly in endangered species management. If F2 habi-

tat is favorable for Wood Thrushes and yields greater
detectability than does F3 habitat, our model sug-
gests that up to 11% of Red–cockaded Woodpecker
habitat (type F3) could be needlessly sacrificed if
management decisions are inappropriately based on
the assumption that Wood Thrushes are equally de-
tectable in both habitats. In this case, the erroneous
implication of observing equal densities of Wood
Thrushes in F2 and F3 habitats is that the total
population density is too far below the satisfying
density and should be increased by removing some of
the unfavorable (F3) habitat and creating more of the
favorable (F2) habitat.

Our analysis dealt only with detection bias in the
form of undercounting, whereas many monitoring
programs may collect information also prone to
overcount bias. For example, in many programs,

Table 1. Annualized cumulative objective values for a combined model of forest management and
Wood Thrush response, under each of four alternative forms of Wood Thrush detection rate, two
alternative Wood Thrush population models, and for five initial forest states. One population model
projected positive population growth in forest type F3 and negative growth in type F2, and the other
model projected the converse. Detection models were: M0. Perfect detectability; M1. Detection rate
of 0.5 in F2 and F3 habitats; M2. Detection rate of 0.3 in F2 habitat and 0.7 in F3 habitat; M3.
Detection rate of 0.7 in F2 and 0.3 in F3; Av. Averaged. Partial cost is the maximum difference in
objective function value for either of the contributing components of the objective function (amount
of F3 habitat, Wood Thrush abundance value), holding the other component fixed.

Tabla 1. Valores anualizados de los objetivos acumulativos para un modelo combinado de gestión forestal
y respuesta de los zorzales mustelinos, según cada una de las cuatro formas alternativas de su tasa de
detección según dos modelos alternativos de población y según cinco estados forestales iniciales. Un
modelo poblacional proyectó un crecimiento de población positivo en el bosque del tipo F3 y un
crecimiento negativo en el del tipo F2, mientras que el otro modelo proyectó lo opuesto. Los modelos de
detección fueron: M0. Detectabilidad perfecta; M1. Tasa de detección de 0,5 en los hábitats F2 y F3; M2.
Tasa de detección de 0,3 en el hábitat F2 y de 0,7 en el hábitat F3; M3. Tasa de detección de 0,7 en
F2 y de 0,3 en F3 (M3); Av. Promedio. El coste parcial es la diferencia máxima en el valor de la función
de objetivos para cada uno de los componentes que contribuyen a dicha función (total de hábitat F3,
valor de abundancia de los zorzales mustelinos), manteniendo fijo el otro componente.

Population model            Cumulative value (annualized)          Partial cost

 Initial forest state     M0      M1      M2       M3        M1 M2   M3    Av

�F3 > 1, �F2 < 1

High F1 0.412 0.407 0.409 0.404 0.024 0.014 0.042 0.027

Balanced age, low F3 0.442 0.440 0.443 0.429 0.007 –0.007 0.058 0.020

Balanced age, high F3 0.441 0.440 0.443 0.427 0.007 –0.007 0.063 0.021

Low F1, low F3 0.459 0.462 0.459 0.452 –0.012 –0.001 0.031 0.006

Low F1, high F3 0.466 0.467 0.466 0.459 –0.005 –0.002 0.028 0.007

�F3 < 1, �F2 > 1

High F1 0.236 0.234 0.234 0.233 0.016 0.021 0.028 0.021

Balanced age, low F3 0.256 0.254 0.256 0.249 0.018 0.002 0.053 0.025

Balanced age, high F3 0.255 0.254 0.255 0.248 0.014 0.000 0.057 0.024

Low F1, low F3 0.268 0.259 0.265 0.253 0.061 0.019 0.108 0.063

Low F1, high F3 0.268 0.264 0.265 0.257 0.025 0.019 0.075 0.040
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an individual or its sign (tracks, fecal pellets, etc.)
may be counted more than once, and these counts
are often considered to represent a consistent over–
representation of a smaller number of individual
animals (Diefenbach et al., 1994). We know of no
reason to expect that such biases would result in
opportunity costs of similar magnitude to our find-
ings; indeed, it is the opinion of one reviewer that
undercounting, constant or otherwise, may be the
least problematic form of count bias. Confirmation
of such speculation must wait until these detection
scenarios are explicitly modeled.

When a monitoring program of uncorrected
counts is considered for the support of manage-
ment decision making, we recommend the con-
struction and exploration of decision models such
as these to fully estimate the true costs of conduct-
ing that form of monitoring. Our suspicion is that
opportunity costs of biased monitoring often will not
be negligible, even under mild departures from the
assumed proportionality relationship. We also sug-
gest that costs of estimating detection rate will
often be less than the total of the collection cost of
uncorrected counts plus the opportunity cost of
decision making based on those counts. Even where
the cost of uncorrected counts is anticipated to be
low relative to the cost of correcting them, the
relationship between the count and true density
should at least occasionally be monitored.

Previous authors have suggested approaches to
determining if or how much detection probability
varies across time or space (see Skalski & Robson,
1992; MacKenzie & Kendall, 2002). However, this
paper is a first attempt at directly evaluating the
implication of this variation in terms of manage-
ment objectives

More generally, this study was a first step in
exploring the proper consideration of monitoring
effort and design in making decisions. We have
focused on the effect of bias in indices of system
state on an optimal policy and its consequences for
the system. We have not considered the relative
precision of adjusted and unadjusted counts, and
its impact on system response in terms of objec-
tives. Wildlife systems are managed in the face of
four sources of uncertainty (Nichols et al., 1995):
environmental variation, partial controllability (a
given decision has variable impact on the system),
structural uncertainty about the key factors that
drive the system, and partial observability (sam-
pling variability and estimation bias).

Reduction of partial observability should improve
decisions directly by giving the manager a clearer
picture of system status. This reduction also pro-
vides the indirect benefit of helping to reduce struc-
tural uncertainty. The cost/benefit of different ap-
proaches to monitoring (both in terms of sampling
effort which controls precision and the types of data
collected to reduce bias) could be incorporated
directly into the decision model by making these
alternative monitoring decisions part of the general
decision space, and incorporating the cost of moni-
toring into the objective function.
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