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Abstract
Continuous time–dependent individual covariates and the Cormack–Jolly–Seber model.— The Cormack–
Jolly–Seber model provides the basic framework for analyzing the survival of animals in open populations
using capture–recapture data. Extensions of this model have already been developed that allow the survival
and capture probabilities to vary between individuals based on auxiliary variables, but none can allow for
variables that are continuous, time–dependent, and vary among individuals. We summarize a new method
for incorporating this type of variable into the Cormack–Jolly–Seber model by modelling the distribution of
the unobserved values of the variable conditional on the observed values, given a few basic assumptions
about how the variable changes over time. We begin with a hypothetical scenario as motivation for our
model and also present the results of two examples used in developing the model.

Key words: Capture–recapture, Cormack–Jolly–Seber model, Auxiliary variables, Continuous time–depend-
ent individual covariates.

Resumen
Covariantes continuas individuales dependientes del tiempo y el modelo de Cormack–Jolly–Seber.— El
modelo de Cormack–Jolly–Seber proporciona el marco básico para analizar la supervivencia de animales
en poblaciones abiertas utilizando datos de captura–recaptura. Si bien se han desarrollado ampliaciones de
este modelo que permiten variar las probabilidades de supervivencia y de captura entre individuos a partir
de variables auxiliares, en ninguna de ellas es posible utilizar variables continuas, dependientes del tiempo
y que varíen de un individuo a otro. El presente estudio analiza un nuevo método que permite la
incorporación de este tipo de variable en el modelo de Cormack–Jolly–Seber mediante la modelación de la
distribución de los valores no observados de la variable según los valores observados, tomando como
referencia algunas asumciones básicas acerca de cómo la variable cambia con el tiempo. En primer lugar,
presentamos un escenario hipotético con objeto de definir el modelo, para posteriormente indicar los
resultados de dos ejemplos que utilizamos para su desarrollo.
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continuas individuales dependientes del tiempo.

C. J. Schwarz & S. J. Bonner, Dept. of Statistics and Actuarial Science, Simon Fraser Univ., 8888 University
Drive, Burnaby BC, V5A 1S6 Canada.

Corresponding author: C. J. Schwarz. E–mail: cschwarz@stat.sfu.ca

Continuous time–dependent
individual covariates and the
Cormack–Jolly–Seber model

S. J. Bonner & C. J. Schwarz

mailto:cschwarz@stat.sfu.ca


150 Bonner & Schwarz

variable (Arnason, 1973; Schwarz et al., 1993). The
likelihood contribution for each individual is then
adjusted by including the transition probabilities for
every pair of consecutive states and summing over
all possible values of the unobserved quantities.
When the variable is continuous the missing values
cannot be modelled by a Markov chain which takes
a finite number of values. Thus, it is necessary to
develop a new model predicting the distribution of
the missing values of the continuous variable. This
paper describes one particular model.

As part of the EURING Technical Meeting’s pro-
ceedings, this paper is not intended to provide
mathematical details of our model, of its derivation,
or of its parameter estimation. Instead, we provide
a heuristic derivation of the model, a brief discus-
sion of the method used to estimate the model
parameters, and a description of two examples that
were used during the model’s development. Full
mathematical details of the model and parameter
estimation methods can be found in Simon Bonner’s
M.Sc. report, which is available on–line (Bonner,
2003). A manuscript with full details has been
submitted to Biometrics (Bonner & Schwarz, 2003).

Methods

In this paper we consider only the simplest case with
one scalar covariate and k equally–spaced capture
occasions. The basic idea behind our model is that
animals living in the same study area should react
similarly to the forces in their environment and so
should have similar changes in the value of the
covariate. For example, imagine a hypothetical cap-
ture–recapture experiment with 5 capture occasions
designed to study the relationship between body mass
and survival of some animal. One would expect that
when food is plentiful and competition low, all animals
gain mass and when conditions worsen or food be-
comes scarce, all animals lose mass. Possible records
for four individuals are shown in figure 1. Three of the
individuals are captured on all five occasions and
show a definite trend in body mass, perhaps in
response to environmental stresses. Between occa-
sions two and three the animals gain mass and
between occasions three and four they lose mass.
The changes are similar for all animals, though small
differences do occur as a result of individual variation.
The fourth individual is captured only on occasions 2
and 4, and in order to make estimates of the effect of
body mass on survival it is necessary to have some
inference of the distribution of the individual’s mass at
the other occasions. The proposed model does this
by supposing that the body mass of this individual
follows the same trends observed in the other 3
individuals. That is, the body mass rises between
capture occasions 2 and 3, drops between capture
occasions 3 and 4, and remains almost constant
between capture occasions 4 and 5. Note that it is not
necessary to make inference about the mass on the
first occasion because the CJS model conditions on
the animal’s first release.

Introduction

The basic model for studying survival probabilities
in open animal populations using capture–recap-
ture data is the Cormack–Jolly–Seber (CJS) model
(Cormack,1964; Jolly, 1965; Seber, 1965). In the
model’s original definition, the survival and capture
probabilities are assumed to be homogeneous for
all animals in the population. In many applications
this assumption is not justified and the capture and
survival probabilities are allowed to vary as func-
tions of auxiliary variables (Pollock, 2002). These
variables may be classified as either continuous or
discrete, time–dependent or constant, and indi-
vidual or external (also called environmental). Here
we present a new model aimed specifically at incor-
porating data from continuous, time–dependent,
individual covariates into the CJS framework.

While there are eight possible classifications of
variables using the system above, five distinct cases
need to be considered separately. The simplest case
involves covariates which are both discrete and
constant over time. For these variables, both exter-
nal and individual, the captured animals can be
divided into distinct groups based on the value of the
variable and survival modelled separately in each
group. Two examples are the effect of gender on the
European Dipper (Cinclus cinclus) and the compari-
son of survival in two Swift (Apus apus) colonies,
both from Lebreton et al. (1992). When the variable
under consideration is continuous, but still constant
over time, the survival and capture probabilities are
both modelled using the framework of generalized
linear modelling (McCullagh & Nelder, 1989). That
is, the survival and capture probabilities are each
considered dependent on a linear transform of the
variable through a selected link function. An example
is the study of the effect of agricultural pesticide use
on Sage Grouse (Centrocercus urophasianus), which
models survival as a function of blood cholineste-
rase using the log–log link to achieve proportional
hazards (Skalski et al., 1993). The same method
can be used for time–dependent, external covariates,
both discrete and continuous, the only difference
being that for such variables the linear predictor
changes over time but is the same for all individuals.
Early examples incorporating time–dependent, ex-
ternal covariates include studies of the effect of
winter temperatures on the survival of the Grey
Heron (Ardea cinerea) using recoveries of dead
birds only (North & Morgan, 1979), and on the
survival of the European Starling (Sturnus vulgaris)
using recapture data (Clobert & Lebreton, 1985).

The difficulty posed in the cases involving time–
dependent, individual variables is that the value of
the variable is unknown for some events that con-
tribute to the model’s likelihood (i.e. capture occa-
sions when a previously captured animal is not
observed). In the case of discrete, time–dependent,
individual variables, a solution to this problem is
the multi–state model which incorporates a Markov
chain into the CJS model to describe the movement
of individuals between the different values of the
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More specifically, our model imposes the as-
sumption that for all individuals the change in the
value of the variable between capture occasions t
and t + 1 is normally distributed with mean �t,
which varies with t, and constant variance, "2.
Denoting the values of the variable for individual i at
capture occasion t by zit, this defines the condi-
tional relationship:

      zi,t+1xxxxxzit i N(zit + �t, "2)        (1)

The values of the covariate for a single individual
form a Markov chain in discrete time with continu-
ous state–space, in some sense, the logical exten-
sion of the multi–state model to the continuous
case. In accordance with our motivating example,
the distribution of the change in the covariate for
individual i at one capture occasion given the value
at the previous occasion is normally distributed
with the same mean for all individuals.

Values of the continuous variable are linked to
the survival and capture probabilities using the
logistic link function (Lebreton et al., 1992). Denot-
ing the capture and survival probabilities as func-
tions of the covariate by &(z) and p(z) respectively,
the link functions are:

     &(z) =                   and   p(z) =                   (2)

where (�0, �1) and (�0, �1) are the vectors of coeffi-
cients of the survival and capture curves respec-
tively. Ultimately, these coefficients determine how
the covariate affects the survival and capture prob-
abilities.

The model with a single scalar covariate con-
tains k + 4 parameters to estimate: k – 1 mean
differences (�1,..., �k–1), the variance parameter ("2),

and the four coefficients of the logistic functions
((�0, �1) and (�0, �1)). The likelihood function for the
model is similar to the likelihood of the basic CJS
model with three modifications. First, the survival
and capture probabilities are replaced by the func-
tions of the covariate in equation 2. Second, a new
product of terms is added for each individual which
accounts for the changes in the covariate between
each pair of adjacent capture occasions. Third, for
each individual it is necessary to integrate their
contribution to the likelihood with respect to each
unobserved covariate value in order to account for
all possible configurations of the missing covariates.
The second and third modifications are analogous
to summing over all possible transitions for the
missing states in the likelihood of the multi–state
model. However, the integrals are potentially of
dimension k – 1 and it is impossible to find maxi-
mum likelihood estimates of the parameters ana-
lytically. Instead, parameter estimates are com-
puted via a Bayesian estimation scheme using the
Metropolis–Hastings algorithm.

As discussed in the EURING 2003 short course,
Bayesian analysis is particularly well suited for
estimation problems involving large proportions of
missing data, including capture–recapture experi-
ments. The primary reason for this is that Bayesian
statistics does not differentiate between the un-
known parameters and the missing data in the
same way that frequentist statistics does. Rather,
both parameters and missing data are considered
as unknown random variables with some underly-
ing distribution. In a Bayesian analysis, inference
about the parameters is derived from the posterior
distribution, which is proportional to the product of
the prior distributions and the model’s likelihood
function (Carlin & Louis, 1996). In both examples

Fig. 1. Hypothetical body mass observations for four individuals in a capture–recapture experiment
with five capture occasions. Observations for each individual indicated by a distinct plotting symbol.

Fig. 1. Observaciones hipotéticas de la masa corporal de cuatro individuos en un experimento de
captura–recaptura que incluía cinco ocasiones de captura. Las observaciones correspondientes a
cada individuo se indican por medio de una línea discontinua.
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presented, the prior distributions were chosen to
simplify the calculations needed to compute esti-
mates rather than to represent true a priori informa-
tion. Conjugate priors were used for the expected
change on each occasion, �t, and the variance, "2,
and these were the normal and the inverse
Gaussian, respectively. Improper flat priors with
equal mass at all points of the real line were chosen
for the coefficients of both the survival and capture
probability functions.

As is the case with most analyses involving a large
number of parameters, the posterior distribution in the
examples does not belong to a regular family of
distributions and numerical methods were needed to
generate parameter estimates. We used the Metropo-
lis–Hastings (MH) algorithm, a specific Markov chain
Monte Carlo (MCMC) technique that is common in
Bayesian analysis (Chib & Greenberg, 1995). Like all
MCMC methods the MH algorithm works by succes-
sively simulating values of the parameters in such a
way as to generate a Markov chain whose stationary
distribution is equal to the posterior distribution. Using
selected starting values, the chain is iterated many
times until it appears that the tail of the chain has
converged in distribution. Values of the parameters
from the remaining iterations of the chain are then
used as if they formed a random sample from the
posterior distribution. In the following examples, the
algorithm was iterated 1,000,000 times in total and
values from the final 200,000 iterations were used to

generate point estimates and credible intervals for
each parameter (Louis & Carlin, 1996). Multiple chains
were run using different starting values to check the
convergence of the chain.

Results

Meadow Voles

The primary data set used in developing the model
concerned the effect of body mass on the survival of
the North American Meadow Vole (Microtus
pennsylvanicus). The data set contained observa-
tions of 515 voles captured at the Patuxent Wildlife
Research Center, Maryland, on four capture occa-
sions in the fall of 1981 and spring of 1982. To
satisfy the assumption that all animals change weight
in a similar manner, captures of juvenile animals
were removed from the data set. A vole was consid-
ered juvenile if its mass was less than 22 g (Nichols
et al., 1992) and for each individual, only the obser-
vations where the mass was actually less than this
mark were deleted. No individual was observed with
a mass less than 22 g after being captured with a
mass greater than 22 g. Records for individuals
captured only on the last occasion were also re-
moved because they do not contribute to the likeli-
hood function. The final data set comprised 450
captures of 199 voles.

Fig. 2. Estimated survival (left) and capture (right) probabilities as functions of body mass (g)  for the
Meadow Vole (solid lines) with point–wise 95% credible intervals (broken lines). Probabilities estimated
for the multi–state model are shown as point estimates with 95% confidence intervals for each of the
three states.

Fig. 2. Supervivencia estimada (izquierda) y probabilidades de captura (derecha) como funciones de
masa corporal (g) para el topillo de Pensilvania (líneas continuas) con intervalos puntuales creíbles al
95% (líneas discontinuas). Las probabilidades estimadas para el modelo multiestado se indican como
estimaciones puntuales con intervalos de confianza al 95% para cada uno de los tres estados.
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The estimated capture and survival probabilities as
functions of the voles’ body mass are in shown figure
2 along with point–wise 95% credible intervals. The
estimated survival probability decreases slightly with
the weight of the animal and the estimated capture
probability increases slightly, though neither of these
effects is significant at the � = 0.05 level. A constant
survival probability near 0.8 and constant capture
probability near 0.9 appears to fit all animals.

For comparison, a multi–state model using dis-
crete mass classes was also fit to the data. Follow-
ing Nichols et al. (1992), the body mass for the
adult voles was divided into three states (22–33 g,
34–45 g, and > 45g) and estimates of the capture
and survival probabilities for each state (fig. 2),
along with the transition probabilities, were com-
puted using Program MARK (White & Burnham,
1999). To match the assumptions of our model,
transition probabilities in the multi–state model were
allowed to change over time, but survival and cap-
ture probabilities were assumed constant. For both
survival and capture there is considerable overlap
of the 95% confidence intervals for the point esti-
mates from the multi–state model and the point–
wise 95% credible intervals for our continuous prob-
ability functions over the observed range of body
mass. This suggest no discrepancies between the
two methods. As with our method, the multi–state
model shows no significant differences in either the
survival or capture probabilities.

Snow Geese

The second data set used in developing the model
contained information on 31,240 Lesser Snow Geese
(Chen carulescens) captured in Northern Manitoba
over a 19–year period. Capture occasions occurred
on an annual basis when the adult geese under-
went post–breeding molt and became flightless for
a short period of time. In this experiment, the
researchers also weighed the birds and collected
vital body measurements at each capture.

Here we have examined the effect of a body
condition index (BCI) defined as the ratio of body
mass to culmen length (g/mm). Because the MH
algorithm for computing the parameter estimates
was computationally intensive, the analysis was
restricted to a 6–year subset of the original data
for the purpose of model development. Further,
the records for several geese were missing values
for either body mass or culmen length on at least
one occasion and all records for these individuals
were removed. As in the previous example, obser-
vations for juvenile birds, identified at the time of
capture, and for birds captured only on the 6th

occasion were also removed from the data set.
The final data set contained a total of 474 obser-
vations for 314 geese.

As in the previous example, the results show no
significant effect of BCI on either the survival or
capture probability of the geese (fig. 3). The 95%

Fig. 3. Estimated survival (left) and capture (right) probabilities as functions of body condition index
(g/mm) for the Lesser Snow Goose (solid lines) with point–wise 95% credible intervals (broken lines).
Probabilities estimated for the multi–state model are shown as point estimates with 95% confidence
intervals for each of the two states.

Fig. 3. Supervivencia estimada (izquierda) y probabilidades de captura (derecha) como funciones de
condición corporal (g/mm) para el ansar nival (líneas continuas) con intervalos puntuales creíbles al
95% (líneas discontinuas). Las probabilidades estimadas para el modelo multiestado se indican como
estimaciones puntuales con intervalos de confianza al 95% para cada uno de los dos estados.
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credible intervals are relatively wide and suggest a
survival probability of 0.75 and capture probability
of 0.3 for all birds.

As above, a multi–state model was also fit for
comparison with our model. In this case the geese
were divided into 2 states using the median ob-
served value of the BCI. Again, there is significant
overlap between the 95% credible intervals for the
continuous capture and survival probability func-
tions and the 95% confidence intervals of the point
estimates from the mulit–state model (fig. 3). How-
ever, while the estimated survival probability func-
tion passes very close to the survival estimates for
the multi–state model, there appears to be some
discrepancy between the estimated capture prob-
ability function and multi–state capture estimates.
We believe that this might be an indication that the
logistic link function is not appropriate in this case.
If there actually was a significant change in the
capture probability of the magnitude suggested by
the estimates from the multi–state model, then the
continuous capture probability function would need
to be very steep near the median BCI value. For a
logistic curve, this would result in very low capture
probabilities for birds with low BCI and very high
capture probabilities for geese with high BCI. In-
stead, the best fitting logistic function may be fairly
flat and the true effect may not be observed. An-
other reason for the discrepancy may be the rela-
tively small size of the data set caused by removing
the observations with missing data. Both the 95%
credible intervals for the continuous function and
95% confidence intervals for the multi–state esti-
mates are very wide, indicating that the capture
probability estimates produced by both models are
highly variable. We are continuing to develop the
model in order to address both of these issues.

Discussion

The method presented here provides a general
framework for incorporating the effect of continu-
ous, time–dependent, individual covariates into
open population capture–recapture models. The
model assumes that changes in the covariate are
similar for all individuals in the population and
constructs the distribution of the unknown values
of the auxiliary variable conditional on the ob-
served values. This information is then incorpo-
rated into the CJS model likelihood using se-
lected link functions in order to estimate the
survival and capture probabilities as continuous
functions of the variable. In the specific model
described, changes in the covariate are assumed
to be normally distributed with time–dependent
mean and constant variance, and the logistic
function is used as the link for both the capture
and survival probabilities. We believe that this
model presents significant advantages over the
current approach of categorizing continuous
covariates and incorporating them into a multi–
state model.

The differences between the proposed model
and the multi–state model are similar to the differ-
ences between a model using completely separate,
static groups of animals and one incorporating
information on a continuous, but constant, variable.
The main advantage of the proposed model is that
it can incorporate continuous covariates without
requiring them to be categorized. Although continu-
ous covariates may used in a multi–state model by
dividing their range into discrete intervals which are
treated as distinct states (see Nichols et al., 1992,
for example), the divisions may be arbitrary and
different categorizations may lead to different con-
clusions about the variable’s effect. Using a small
number of divisions may impose unrealistic as-
sumptions about the similarity of individuals in the
same state and obscure the underlying changes in
the capture or survival probabilities. Using a larger
number of divisions may lead to problems with
model identifiability. In some situations, the results
of a multi–state model may also be more difficult to
interpret. In particular, if a large number of divisions
is used then it becomes hard to describe changes
in the covariate over time based on the transition
rates. In comparison, our model produces direct
information about changes in the variable’s distri-
bution. Comparing different models fit using differ-
ent sets of auxiliary variables will also provide a
simple way to test the effect of each variable on the
animals’ survival probability.

The main disadvantage of our approach is that
it imposes assumptions on both the distribution of
the covariate and on the relationship between the
covariate and the survival and capture probabili-
ties. If these assumptions are not satisfied then
the model will fit the data poorly and provide
erroneous conclusions. In particular, the use of the
logistic link function in the current model may be
inappropriate in some situations, e.g. if the sur-
vival or capture probabilities are not monotonic
functions of the auxiliary variable. If this is the
case and a suitable link function cannot be found,
then the multi–state model, which makes no as-
sumptions about the relationship between the cap-
ture and survival probabilities for the different
states, will be more appropriate.

As future work, we envisage several extensions of
our model to accommodate different assumptions
about the behaviour of the covariate and the rela-
tionship between the covariate and the survival and
capture probabilities. One of the basic assumptions
of our model is that the changes in the covariate
have the same distribution for all individuals in the
population. As in both examples described, this as-
sumption would likely not be satisfied when consid-
ering changes in body measurements for both adult
and juvenile animals. A simple extension would use
two values of the expected change for each pair of
capture occasion, one for adults and one for juve-
nile. It should also be possible to fit models in which
the expected change in the auxiliary variable de-
pends on the value of the variable itself. For exam-
ple, modelling the behaviour of the variable on the
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log scale would generate a multiplicative model in
which the expected change in the value of the
covariate is proportional to its current value. Another
constraint of the proposed model is that the survival
and capture probabilities for a given value of the
covariate are assumed constant over time. Time–
dependent survival probabilities could be based on
the Cox proportional hazards model for survival
analysis, which allows for variation in survival over
time under the assumption that the relative hazard
for two different values of the auxiliary variable is
constant (Cox, 1972). The same model could be
used for the capture probability as well.
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