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Abstract
Beyond survival estimation: mark–recapture, matrix population models, and population dynamics.— Survival
probability is of interest primarily as a component of population dynamics. Only when survival estimates are
included in a demographic model are their population implications apparent. Survival describes the transition
between living and dead. Biologically important as this transition is, it is only one of many transitions in the life
cycle. Others include transitions between immature and mature, unmated and mated, breeding and non–
breeding, larva and adult, small and large, and location x and location y. The demographic consequences of
these transitions can be captured by matrix population models, and such models provide a natural link connecting
multi–stage mark–recapture methods and population dynamics. This paper explores some of those connections,
with examples taken from an ongoing analysis of the endangered North Atlantic right whale (Eubalaena glacialis).
Formulating problems in terms of a matrix population model provides an easy way to compute the likelihood of
capture histories. It extends the list of demographic parameters for which maximum likelihood estimates can be
obtained to include population growth rate, the sensitivity and elasticity of population growth rate, the net
reproductive rate, generation time, measures of transient dynamics. In the future, multi–stage mark–recapture
methods, linked to matrix population models, will become an increasingly important part of demography.
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Resumen
Más allá de la estimación de supervivencia: marcaje–recaptura, modelos matriciales de poblaciones y dinámica  de
poblaciones.— La probabilidad de supervivencia resulta especialmente interesante como componente de la dinámica
poblacional. Sólo cuando las estimaciones de supervivencia se incluyen en un modelo demográfico, puede apreciarse
su repercusión en la población. La supervivencia describe la transición entre la vida y la muerte. Pese a su importancia
biológica, dicha transición sólo constituye una más de las que componen el ciclo vital, debiendo destacarse, entre
otras, la que se produce entre la inmadurez y la madurez, la ausencia de apareamiento y el apareamiento, la
reproducción y la ausencia de reproducción, el estado larval y el de adulto, pequeño y grande, y entre el
emplazamiento x y el emplazamiento y. Las consecuencias demográficas de dichas transiciones pueden determinarse
mediante modelos  matriciales de poblaciones, que proporcionan un enlace natural capaz de vincular los métodos de
marcaje–recaptura de fases multiestados con la dinámica poblacional. El presente estudio analiza algunas de dichas
conexiones, incluyendo ejemplos extraídos de un análisis que sigue en marcha de la ballena franca (Eubalaena
glacialis), en peligro de extinción. La formulación de problemas, considerados desde la perspectiva del modelo
matricial de poblaciones, permite calcular fácilmente las probabilidades de las historias de captura, al tiempo que
amplía la lista de parámetros demográficos con respecto a los que pueden obtenerse estimaciones por máxima
verosimilitud, incluyendo la tasa de crecimiento poblacional, la sensibilidad y elasticidad de dicha tasa, la tasa neta de
reproducción, el tiempo generacional y las mediciones de la dinámica transitoria. En el futuro, los métodos de
marcaje–recaptura de multiestados, en combinación con los modelos matriciales de poblaciones, constituirán una
parte cada vez más importante de la demografía.

Palabras clave: Modelos matriciales de poblaciones, Ballena franca, Eubalaena glacialis, Sensibilidad, Elasticidad.
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Introduction

Throughout its history, and certainly since the 1960s,
the field of mark–recapture (MR) statistics has
emphasized the estimation of survival probability.
Lebreton et al. (1992) provided a state–of–the art
review of the field, emphasizing tests of hypotheses
about, and selection of models describing, survival
probability. But survival probability is, in itself, of
limited interest. After all, every individual dies even-
tually; why should we care about the short–term
probability of this ultimately certain event? The
answer, of course, is that survival is vitally impor-
tant as a component of population growth. In the
simple population growth model

 N (t + 1) = [P (survival) + E (reproduction)] N ( t )  (1)
   = �N ( t )

the rate of increase � is the sum of the survival
probability and the birth rate.

A model like (2) makes the demographic analog
of the homogeneity assumption of MR theory: that
all individuals are identical. Since all individuals are
obviously not identical, there is a long history (a
century or more) of demographic population models
—models that disaggregate individuals on the basis
of age, physiological condition, size, developmental
stage, spatial location, etc. (Lotka, 1907, 1924, 1934–
1939; Kermack & McKendrick, 1927; Leslie, 1945;
Keyfitz, 1968; Metz & Diekmann, 1986; Caswell,
1989, 2001; Tuljapurkar & Caswell, 1997).

Structured demographic models do two things.
The most obvious but least important is to provide
more accurate descriptions of population dynam-
ics, by incorporating more biological differences
among individuals and the way that those differ-
ences affect individuals’ fates in a given environ-
ment. The more important thing has nothing to do
with accuracy. Structured demographic models are
valuable because they provide explanations of popu-
lation dynamics in terms of the fates of individuals.
Calculating the population growth rate from age– or
stage–specific data may or may not produce more
accurate predictions, but it shows how the life cycle
influences population dynamics in ways that un-
structured models cannot do.

Structured models can be written as partial
differential equations, delay–differential equations,
integrodifference equations, or matrix population
models, depending whether individuals are di-
vided into discrete classes or measured by a
continuous variable, and whether time is discrete
or continuous (Tuljapurkar & Caswell, 1997;
Caswell, 2001):

    Discrete–state  Continuous–state
Discrete–time        Matrix          Integrodifference

              population    equations
       models

Continuous–time  Delay–differential  Partial differential
       equations          equations

Regardless of the mathematical framework,
demographic models link the fates of individuals
to the dynamics of populations. This individual–
population link is the key to using MR methods to
estimate the parameters in such models, be-
cause MR data are essentially individual data;
putting a tag on an animal (or plant) distin-
guishes that individual from all others in the
population. Repeated observations on that indi-
vidual record its history, distinct from the history
of any other individual.

Here, we will focus on matrix population mod-
els, because they correspond most closely to the
structure of typical MR data, but it is worth noting
that connecting MR methods and demographic
models in the other frameworks is an important
problem (e.g., Fujiwara, 2002).

We will describe, briefly, the structure of a matrix
population model and some of the ways that such
a model characterizes population dynamics (for a
much more complete description, see Caswell,
2001). We will emphasize perturbation analysis as
an integral part of demographic analysis. This will
lead to a discussion of the link of such models to
MR analysis, and to ways in which matrix popula-
tion models naturally encapsulate the fundamental
notion of the "likelihood of a capture history". Fi-
nally, we will illustrate some of these points with
aspects of a demographic analysis of the North
Atlantic right whale.

Matrix population models

A matrix population model requires, first, a choice
of a projection interval, or time step, over which to
project the population, and a set of life cycle stages
into which to classify individuals. The stages are
chosen by a homogeneity criterion: knowing the
stage of an individual must suffice to predict, at
least probabilistically, the response of an individual
to the environment (Metz & Diekmann, 1986,
Caswell, 2001). Choosing stages requires a knowl-
edge of, and an ability to balance, the biology of the
organism and the limitations of the available data.

Given the projection interval and the stages, the
model can be written as

       (2)

Here n(t) is a vector whose entries give the
numbers of individuals in each stage, and A is a
square population projection matrix whose entries
may depend on time, the environment, and/or popu-
lation density.

Characterizing population dynamics

The dynamics induced by (2), and the quantities
calculated to describe those dynamics, depend on
the nature of the projection matrix. It is these
quantities that a demographic analysis sets out to
estimate.
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Linear time–invariant models

The solution to (2) in this case can be written as a
sum of exponentials of the eigenvalues of A. Be-
cause A is inherently non–negative, the Perron–
Frobenius theorem guarantees that one of these
eigenvalues is real, non–negative, and as great as
or greater than the magnitude of any of the others.
If A is also primitive, then this eigenvalue �1 (or,
where the subscript is not needed for the context, �)
is strictly greater than any other, and the population
eventually grows at this rate with a stable structure
proportional to the corresponding right eigenvalue
w. The left eigenvector v gives the distribution of
reproductive values.

Before this asymptotic growth rate is realized,
the population will exhibit transient fluctuations in
both abundance and structure, which can be
analyzed in terms of the subdominant eigenvalues
and eigenvectors of A.

Periodic models

Periodic models are useful for describing effects of
seasonal variation in the vital rates (e.g., Hunter,
2001; Hunter & Caswell, 2004a; Smith et al., 2004).
They can also be used to describe inter–annual
variation as an approximation to other kinds of
variation.

Population growth over an annual cycle of p
phases, starting at phase 1, is given by the product

                     A1 = Bp···B2B1                (3)

Note that the seasonal matrices are multiplied from
right to left, in order. The population growth rate is
given by the dominant eigenvalue � of A1. The stable
stage distribution (at phase 1) is given by the corre-
sponding right eigenvector w. The reproductive value
distribution is given by the left eigenvector v. The
stable stage distribution and reproductive value at
other phases of the cycle are given by the eigenvectors
of the appropriate cyclic permutations of the Bi ; e.g.,
those at phase 2 would be obtained from

                     A2 = B1Bp···B2               (4)

Stochastic models

In a stochastic environment, population growth is
described by the time–varying model

       (5)

where the matrices At are generated by a stochastic
model for the environment. Given some reasonable
assumptions about the environmental process and
the matrices, asymptotic population growth is, with
probability 1, characterized by the stochastic growth
rate

       (6)

where ||x|| = 3i |xi| is the 1–norm (Furstenberg &
Kesten, 1960; Oseledec, 1968; Cohen, 1976, 1977a,
1977b; Tuljapurkar & Orzack, 1980; Tuljapurkar,
1989, 1990).

Density–dependent models

The dynamics of a density–dependent population
described by the nonlinear model

              n(t + 1) = An(t) n(t)                 (7)

are not characterized by exponential growth. In-
stead, trajectories typically converge to an attracting
invariant set (equilibrium point, cycle, invariant loop,
or strange attractor) on which the long–term average
growth rate is 1. Often, these attracting invariant
sets exhibit bifurcations as any parameter in the
model is varied. Figure 1 shows an example from a
simple two–stage model (juveniles and adults) with
density–dependent fertility, in which

       (8)

where "1 and "2 are juvenile and adult survival
probabilities, � is the maturation rate, and f is the
fertility at low densities.

As f is increased, the equilibrium population
increases from zero (at any value of f below the
critical value at which the population is capable of
growing at all at low densities) to higher and higher
values. As f increases, a flip bifurcation occurs and
the stable equilibrium is replaced by a stable 2–
cycle. As f is increased further, the 2–cycle is
replaced by a 4–cycle, which in turn is replaced by
cycles of period 8, 16, etc. Eventually the dynamics
become chaotic. For more details on such bifurca-
tions, see Caswell (1997, 2001) and Neubert &
Caswell (2000a). For an account of an outstanding
experimental investigation of such bifurcations in
laboratory populations of Tribolium flour beetles,
see Cushing et al. (2003).

The point of this demonstration is not concern
over whether a particular 2–stage population might
exhibit chaotic dynamics, but to make the point that
the characterization of a density–dependent model
—the answer to the question "what are the implica-
tions of this set of parameters?"— is the entire
bifurcation sequence. It is the result of the parameter
values and the functional forms in the matrix An,
which are exactly what would be estimated by a MR
analysis using density as a covariate.

Because the long–term performance of a den-
sity–dependent population involves its attractor(s),
two different measures of population performance
have attracted attention. The first is the long–term
population composition or some function of it.
Choosing the function has not received much care-
ful thought. There is a tendency to think of total
density (for equilibria) or time–averaged total den-
sity (for cycles, etc.) without considering the bio-
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logical justification for the choice. Since total density
involves adding together individuals of very different
properties (tiny seedlings and enormous trees, etc.), it
is unlikely to capture much of relevance, but alterna-
tives are not totally clear (for one, see (34) below)

The invasion exponent  

An alternative measure of population performance
is the invasion exponent. It can be motivated by
comparing the growth rates of two density–inde-
pendent populations, each with its own vital rates,
and thus with population growth rates �(1) and �(2).
If Ni is any measure of population size of type i,
then asymptotically

       (9)

Type 2 will increase in frequency relative to type 1
if and only if log �(2) > log �(1). Since log � deter-
mines the ability of a type to invade, it is referred to
as the invasion exponent. The sensitivity and elas-
ticity of � show the effect of parameter changes on
the invasion exponent.

Invasion calculations can be applied to linear and
nonlinear, deterministic and stochastic models (Metz
et al., 1992; Ferriére & Gatto, 1995; Rand et al., 1994;
Grant, 1997; Grant & Benton, 2000). Consider two
types, each defined by vector �����i of parameters;
suppose that type 2 is trying to invade type 1. Its
dynamics during this invasion will depend on its
parameters, on the density of the resident, and on its
own density. To make this dependence clear, we will
write the projection matrix for type 2 as

      (10)

The invasion exponent describes the dynamics of
type 2 when it invades at such a low density that
n2(t) is negligible for a very long time. It is given by
the long–term average growth rate of type 2 while
type 1 is on its attractor ;

      (11)

The notation �I (Caswell, 2001) emphasizes the rela-
tion between the invasion exponent and the growth
rate in a constant environment (�) or a stochastic
environment (�s). The superscript (2 t1) indicates
that type 2 is invading type 1.

In the special case in which  is an equilibrium
point, the invasion exponent is just the log of the
dominant eigenvalue of the constant projection
matrix for type 2, evaluated at the equilibrium den-
sity of type 1:

      (12)

For examples of the use of the invasion exponent in
calculations regarding the evolution of dispersal, see
Khaladi et al. (2000) and Lebreton et al. (2000).

Environment–dependent models

Suppose that the vital rates are functions of some
environmental variable �(t); then we could write

   (13)

The dynamics of such a population depend on
what the environment does, and there is surpris-
ingly little to say in general about such models.

If �(t) represents a particular fixed environmental
condition (habitat type, or level of pollution, say),
interest might focus on potential population growth
under different but fixed environmental conditions.
Then life table response experiment (LTRE) analy-
ses can be used to decompose the effects of the
environment on � into contributions from effects on
each of the vital rates. For example, suppose that
two environments (�1 and �2) are being compared.
The matrices  and  yield population growth
rates  and . To first order

      (14)

where the derivative of � is calculated according to
(15) below. For details see Caswell (1989a, 2000,
2001); for examples see Levin et al. (1996), Cooch
et al. (2001).

When �(t) represents an observed temporal trend,
asymptotic dynamics may be of little relevance,
and attention would focus on short–term population
projections. Those projections will depend on the
ability to forecast the trend accurately. In other
cases, as when �(t) represents a climatic variable
like rainfall, the asymptotic growth rate under a
specified rainfall regime (characterized, say, by a
time–series model or a stochastic model for distur-
bances like fire; Silva et al., 1991; Caswell & Kaye,
2001) would be of great interest.

In each of these cases, the environment–dependent
model is reduced to a simpler model (short–term
transient dynamics, long–term stochastic dynamics, or
long–term linear dynamics in different environments).
But this kind of model has received little general
attention, perhaps because it has not been easy to
estimate vital rates as functions of environmental vari-
ables in the field; that task becomes much easier with
mark–recapture approaches.

Perturbation analyses

The demographic analyses in the preceding (non–
exhaustive) list all take as given a set of demo-
graphic parameter values. But almost never are we
interested in only one specific set of parameter
values. There is always the possibility that the val-
ues could change, because of natural environmental
change, human activity (including management ac-
tions), evolutionary change, or because the param-
eters are estimated with error. Perturbation analyses
evaluate the effect of such changes. They are avail-
able for many of the demographic indices just de-
scribed (Caswell, 2001).
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Linear time–invariant models

The sensitivity of population growth rate � of a
change in a parameter ����� is

      (15)

where the eigenvectors are scaled so that their
scalar product <v,w> = 1 (Caswell, 1978, 2001)
and vT is the trasposse of v. In the important case
where ����� = aij, this reduces to:

      (16)

The proportional sensitivity, or elasticity, measures
both changes and their effects on a logarithmic
scale, and is given by:

      (17)

See Link & Doherty (2002) for explorations of
some interesting alternatives to considering the
effect of proportional changes. Their paper is a
response to concerns raised by the unfortunate
tendency to think that elasticities (or sensitivi-
ties) measure the "importance" of a parameter,
and then to be puzzled when the importance of
survival, say, is not the same as the importance
of mortality. The confusion can be alleviated by
repeating, over and over, that sensitivities and
elasticities are derivatives, nothing more. That
the derivative of a quantity with respect to one
variable is not the same as its derivative with
respect to another variable is not particularly
surprising. Because � is generally a nonlinear
function of the parameters, sensitivities and
elasticities can only predict approximate results
of large perturbations in �����. Experience has shown
that, in most cases, they give usefully accurate
predictions even for quite large changes.

Since the elasticities of � to changes in the aij
sum to 1, they can (with care) be interpreted as
showing the proportional contribution of the aij to
population growth rate. In evolutionary contexts,
the sensitivities of � measure the selection gradi-
ents on the aij. (The elasticities, in contrast, do not
measure selection gradients, and are of only lim-
ited use in evolutionary calculations; see Caswell
2001, Section 11.2)

Periodic models

In a periodic model, we want to compute the
sensitivities and elasticities of � to changes in the
entries of each of the seasonal matrices Bi, using
the approach of (Caswell & Trevisan, 1994; Lesnoff
et al., 2003). Let SA be the sensitivity matrix for A
(i.e., the matrix whose (i,j) entry is ∑�/∑aij). In
general, suppose that there are p matrices in a
seasonal cycle, B1,...,Bp. To calculate the sensi-
tivity of � to the entries of Bm, let

    A = F(m) Bm G(m)       m = 1,...,p       (18)

where
     Bp···Bm+1 m ! p
     I m = 1

      Bm–1···B1 m !1
      I m = p

The sensitivity matrix  whose entries are the
sensitivities of � to bij

(m) is

      (20)

The elasticity matrix  is

      (21)

where ° denotes the Hadamard, or element–by–
element, matrix product.

The elasticities eij
(m) sum to 1 for each m. Thus

they can be interpreted as proportional contribution
of the vital rates bij

(m) to population growth, exactly
is done for non–seasonal models.

Stochastic models

Tuljapurkar (1990) derived the sensitivity of log �s
and the elasticity of �s to changes in aij(t). The

F(m) =
              (19)

G(m) =
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Fig. 1. A bifurcation diagram for the density-
dependent model (8). For each value of fertility f,
the asymptotic attractor is plotted. Equilibria
appear as single lines, cycles as multiple lines,
and chaotic dynamics as a cloud of points.

Fig. 1. Diagrama de bifurcación para el modelo
dependiente de densidades (8). Para cada va-
lor de fertilidad f, se representa gráficamente el
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matrices At are generated by the stochastic envi-
ronment. Assume that At is subject to a small
perturbation, so that

      (22)

The entries of Ct determine which elements of At
are perturbed, and the relative magnitudes of those
perturbations.

To calculate the effect of the perturbation on log �s,
the stochastic model for the environment is used to
generate a sequence of matrices A0,..., AT–1, where T
is a large number. Starting from an arbitrary
nonnegative initial vector w(0), with ||w(0)|| = 1, use
the sequence of matrices to generate a sequence of
stage distribution vectors

      (23)

and one–step growth rates

      (24)

where ||·|| denotes the 1–norm. Similarly, starting
with an arbitrary nonnegative terminal vector v(T)
with ||v(T)|| = 1, generate a backwards sequence of
reproductive value vectors

      (25)

In terms of these quantities, Tuljapurkar (1990)
showed that the stochastic growth rate after the
perturbation, log �s(�), is:

      (26)

The coefficient of � on the right hand side of (26)
is the sensitivity of the stochastic growth rate to the
perturbations imposed by the sequence of pertur-
bation matrices Ct.

If only a single element of At is perturbed (say,
aij (t)) and the perturbation is the same at each
time, Ct is a constant matrix with a 1 in the (i,j)
position and zeros elsewhere;

        Ct = ei ej
T       (27)

where ei is a vector with a 1 in the i th entry and zeros
elsewhere. Substituting (27) into (26) leads to
Tuljapurkar’s formula for the sensitivity of log �s to aij:

      (28)

The elasticity of �s to aij is calculated by assum-
ing that the perturbation cij(t) is proportional to aij(t),
so that Ct is a matrix with aij(t) in the (i,j) position
and zeros elsewhere:

    Ct = ei ei
TAt ej ej

T              (29)

Substituting (29) into (26) gives the elasticity of �s
to aij:

      (30)

Density–dependent models

The perturbation analysis of a density–dependent
model can be carried out in terms of the invasion
exponent �I or the equilibrium density . There are
intimate connections between the two measures of
performance (Takada & Nakajima, 1992, 1998;
Caswell et al., 2004). Let us write the projection
matrix as:

      (31)

where � is a parameter and the fi are functions of
density that appear in the model. There will be more
than one such function if different vital rates are
affected by different sets of stages in the life cycle.

Let

      (32)

be the population growth rate calculated from the
matrix at equilibrium (� = 1). Then it can be shown
(Caswell et al., 2004) that

      (33)

where Ñ is an effective equilibrium density, which is
a linear combination of stage densities

      (34)

with the weight on stage i given by

      (35)

The biologically effective density Ñ weights the
density of the stages by their importance to den-
sity–dependent effects (∑fh/∑ni) and the importance
of those effects to demography (∑�/∑fh). This com-
bination of density–dependence and demography
is exactly the content of the nonlinear model, so Ñ
has ample biological justification as an interesting
quantity. This result provides a valuable link be-
tween � (and thus all kinds of evolutionary inva-
sion questions) and equilibrium population (and
thus all kinds of questions related to population
management); see Grant & Benton (2003) for a
discussion of the need for such relationships.

Estimation: beyond survival

The point of this quick tour through the types of
matrix population models is to emphasize that the
construction of such a model creates a whole suite
of population parameters, particularly those de-
scribing perturbations, that can be estimated.
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Estimation with mark–recapture analyses

The population projection matrix and its dependence
on time or the environment is the central entity in
population dynamics. Mark–recapture methods–in
particular, the multi–state versions–are an extraordi-
narily powerful tool for constructing such models.
Demographers have been slow to realize this fact.
For example, Caswell (1989) wrote an entire book
on matrix population models without mentioning
multistate MR methods, although they date back to
Arnason (1973). He knew better by 2001, partly
because Nichols et al. (1992) presented the first
explicit application of multistate MR methods to
matrix population models. The link is simple. A
matrix population model contains a complete de-
scription of the probabilities of transition among all
the identified stages plus death. The history of any
individual consists of a sequence of such transitions,
beginning with birth and ending with death. MR data
consists of observations of such sequences, with the
possible extra complication of failing to observe or
capture the individual at each time; in other words,
of capture histories. The key to estimating param-
eters (survival or more complex patterns of transi-
tion), is to use the probability of a set of capture
histories as the likelihood of the parameters generat-
ing the probability. A matrix population model makes
it possible to do this in a remarkably straightforward
way.

Decomposing the projection matrix

In most (all?) cases, the projection matrix can be
decomposed into a part T that represents transi-
tions of individuals already present in the popula-
tion and a part F that represents the creation of new
individuals by reproduction:

                            A = T + F              (36)

(Feichtinger, 1971; Cochran & Ellner, 1992; Cushing
& Yicang, 1994). We will focus on T, and return to
F later.

Let s be the number of stages in the model.
Create the (s + 1) × (s + 1) matrix ����� by adding
death as a stage

      (37)

where m is a row vector of stage–specific prob-
abilities of death, mj = 1– 3i tij. The matrix ����� is the
transition matrix of an absorbing Markov chain,
and can be used to calculate many demographi-
cally useful quantities, including the distribution of
ages at death (even though age may not appear in
the model), the net reproductive rate, the genera-
tion time, age–specific survivorship, the stable
age distribution within each stage, and the prob-
ability of any event that can be expressed in terms
of stages (Caswell, 2001). Because ����� is derived
from A, it may vary with time, density, or environ-
mental factors.

The probability of capture histories

For our present purposes, the most important use
of ����� is that it makes it easy to write down the
probability of a multi–state capture history. Let

     (38)

be a diagonal matrix of capture probabilities. If
ps+1 = 0, recoveries of dead individuals are not con-
sidered, but the life cycle graph can be extended to
include categories representing newly dead and
dead–and–gone, and both recaptures and recover-
ies considered together.

For what follows, it will be useful to define ei as
a column vector with a 1 in the i th entry and zeros
elsewhere, e as a column vector of ones, and
Ei = eiei

T as a matrix with a 1 in the (i,i) position and
zeros elsewhere. The columns of a matrix can be
summed by multiplying on the left by eT.

An individual is first marked at time t = 1 and then
recaptured (or not) at times t = 2,...,T. The capture
history consists of a sequence of numbers,

  h = X1,X2, ...,XT               (39)

where Xt indicates the stage of the individual or the
fact that it was not seen at time t. If the individual
is not seen, let Xt = 0.

Suppose an individual was marked in state
X1 at t = 1. Then the vector  gives the prob-
ability distribution of its state at t = 1. The
probability distribution of its state after the tran-
sition from t = 1 to t = 2 is the vector 
including the probability of death. The entries
of the vector  give the probability of cap-
turing the individual in each of the stages at
t = 2. Similarly, the entries of the vector 
give the probabilities of failing to capture the
individual in each of the stages at t = 2. Con-
tinuing this process leads to the following sim-
ple formula for the probability of any capture
history (Caswell, 2001; Fujiwara & Caswell,
2002).

      (40)

      (41)

where
if Xt+1 g 0

   Qt =                (42)
if Xt+1 = 0

This provides a simple matrix extension of the
familiar formula for the probability of a capture
history in the CJS model; it is possible because �����
includes death as a state.
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For example, suppose that an individual is marked
in stage 1, captured in stage 3, captured in stage 5,
and then not captured for two time intervals, so that

h = 1,3,5,0,0

Applying (42) gives (43)

P[h] = eT[(I – P5)�����4][(I – P4)�����3][E5P3�����2][E3P2�����1]e1

Because death is included as an absorbing state in
�����, this formula automatically accounts for all the
possibilities of survival and state transition during
the terminal string of (two) zeros in this sighting
history. To see how this works, consider a simple
example with only two stages and time–invariant
transitions

     (44)

and sighting probabilities. Consider the capture
history h = 2,1,0. The individual is known to be in
stage 2 at t = 1, so the probability distribution of its
initial state is Z = (0  1 0) T. At t = 2 the probability
distribution of its state is

     (45)

The probability of being captured in each of those
stages is

     (46)

But we know it was captured in state 1, so only the
first entry in this vector is relevant:

     (47)

Applying the transition matrix to this vector gives
the probability, at t = 3, of the three states

     (48)

The individual was not captured at t = 3, the
probability of which is

     (49)

Finally, we add all these probabilities to obtain the
probability of all possible transition and sighting
sequences compatible with the capture history.

eT(I – P)�����E1P�����z  = (1 – p1)t11p1t12       (50)

           + (1 – p2)t21p1t12       (51)

            + (1 – p3)m1p1t12       (52)

The first term in this sum corresponds to (reading
from right to left) transition from 2 to 1, capture in
1, transition from 1 to 1 and failure to capture in 1.
The second term corresponds to transition from 2
to 1, capture in 1, transition from 1 to 2, and failure
to capture in 2. The third term corresponds to
transition from 2 to 1, capture in 1, death  fro stage
1, and failure to recover as dead. Adding yet an-
other zero to the capture history and multiplying
(49) by (I – P)����� will give the somewhat larger set of
possibilities at t = 4.

Making the customary assumption of independ-
ent and identical individuals, the log likelihood for
the entire collection of capture histories is

      (53)

Maximum likelihood estimates of the parameters
can be found by maximizing log L (e.g., using
Matlab optimization routines). Nested models can
be compared using log–likelihood tests, and model
selection using information–theoretic methods
(Akiake’s Information Criterion, or AIC; see
Burnham & Anderson, 1998) can be carried out
directly using log L.

Models in which ����� and P depend on time, exter-
nal covariates, or individual covariates can be de-
fined by making the appropriate matrix entries func-
tions of the covariates and maximizing the likeli-
hood with respect to the resulting parameters.

The m–array

We note that it is also possible to construct the
multi–state version of the m–array from � � � � � and P, in
calculations essentially identical to those of Brownie
et al. (1993), and to use it to derive the likelihood
function.

More things to estimate

Fertility

The estimate of ����� provides estimates of the entries
in T, the transition portion of the projection matrix
A. Fertility, however, appaears in F, and estimation
of F requires extra information on reproduction.
One way to obtain some of this information is to
include a state in the life cycle corresponding to
reproduction or breeding. Every time an individual
enters this state, she produces some number of
offspring. If the expectation of that number is known,
or can be estimated, then the estimate of ����� also
provides an estimate of F, which will contain posi-
tive values only in entries corresponding to transi-
tions to the reproductive state. The fertilities in F
will depend on the reproductive biology of the spe-
cies, with care taken to account for when in the
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annual cycle censuses occur (Caswell, 2001). In
the example we consider here, the right whale
produces only a single calf in a reproductive event,
so construction of     F is relatively easy.

Demographic indices

If the parameters defining the model are estimated
by maximizing the likelihood log L, then any invert-
ible function of those parameters is also a maximum
likelihood estimate. That means that the matrix popu-
lation model provides maximum likelihood estimates
of, inter alia, the population growth rate, stable stage
distribution, reproductive value distribution, damping
ratio, period of oscillation, and the sensitivity and
elasticity of population growth rate to all parameters.
And that’s just for the linear time invariant case. If a
stochastic model is estimated, then the analysis
provides maximum likelihood estimates of the
stochastic growth rate and its sensitivity and elastic-
ity. And a density–dependent model yields maximum
likelihood estimates of the attractor(s) to which the
population will converge (equilibria, cycles, invariant
loops, or strange attractors) and the sensitivity of the
invasion exponent and the effective equilibrium popu-
lation to changes in the parameters.

Standard errors for all these parameters can be
obtained from the results of maximizing the likeli-
hood, either by the Taylor series expansion method
for those quantities (like �) whose sensitivity to
parameters can be written down, or by a parametric
bootstrap approach using the information matrix.
For example, if C is the covariance matrix of the
parameter vector �, then to first order

      (54)

where the vector of derivatives ∑�/∑����� is obtained
from (15). In addition, model uncertainty can be
analyzed using information–theoretic methods
(Burnham & Anderson, 1998).

It is hard to overstate the potential of this for
demographic studies.

An example: the North Atlantic right whale

The North Atlantic right whale (Eubalaena glacialis)
was once abundant in the northwestern Atlantic,
but as an early preferred target of commercial
whalers by 1900 it had been hunted to near extinc-
tion. The remaining population (only about 300
individuals) is distributed along the Atlantic coast
of North America, from summer feeding grounds
in the Gulf of Maine and Bay of Fundy to winter
calving grounds off the Southeastern U.S. In the
more than 50 years since the end of commercial
whaling, the population has recovered only slowly.
Right whales are killed by ship collisions and
entanglement in fishing gear, and may be affected
by pollution of coastal waters. .

Individual right whales are photographically iden-
tifiable by scars and callosity patterns. Since 1980,

the New England Aquarium has surveyed the popu-
lation, accumulating a database of over 10,000
sightings. Treating the first year of identification of
an individual as marking, and each year of
resighting as a recapture, we have used MR statis-
tics to estimate demographic parameters of this
endangered population (Caswell et al., 1999;
Fujiwara & Caswell, 2001, 2002; Fujiwara, 2002).
From a conservation point of view, the most alarm-
ing finding has been a declining trend in the
survival of reproducing females, which in turn has
driven a decline in population growth rate so that
� is now less than 1.

Life cycle structure

Figure 2 shows a transition graph for the right
whale. It distinguishes males and females, and
divides each sex into developmental stages. Fe-
males are classified as calves, immature, mature,
mothers (reproducing females), and post–mothers
(i.e., mature females in an interbirth interval). This
graph differs from that in Fujiwara and Caswell
(2001) by incorporating the post–mother stage,
which enforces a 2–year minimum for the interbirth
interval, which is supported by the data.

The inclusion of a stage representing breeding
females captures the biologically important act of
breeding as an explicit transition in the life cycle,
which is particularly critical when mature females
do not breed every year. It permits calculation of
the fertility part of the projection matrix, because
in this case we know that only a single calf is
produced by a reproducing female.

Modelling transitions

A model in which all transition and sighting
probabilities were free to vary independently
would, for this data set, have about 300 param-
eters. We chose a much more parsimonious
universe of models to investigate. Because pre-
vious analyses (Fujiwara & Caswell, 2001) had
shown that variation in calf survival, mother
survival, and reproductive rate were the most
variable, we permitted variation only in &21, &54,
and the birth probability conditional on survival,
�43, defined by

&43 = "3 �43               (55)

where "3 is the survival probability of stage 3.
We examined models in which each of these
three parameters was constant or a logistic func-
tion of time and/or of the North Atlantic Oscilla-
tion (NAO). The NAO is a major climatic and
oceanographic oscillation, defined in terms of
the barometric pressure difference between Ice-
land and the Azores (e.g., Hurrell, 1995); the
NAO is know to have effects on a variety of
ecological systems (Ottersen et al., 2001), in-
cluding plankton in the western North Atlantic,
where right whales feed.
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&21(t) = f (time, NAO)       (56)

      (57)

&54(t) = f (time, NAO)       (58)

      (59)

&43 (t) = f (time, NAO)       (60)

               (61)

This yields 43 = 64 different models for the transi-
tion probabilities, with 37–42 parameters.

Previous analyses had shown that sighting prob-
ability varied greatly over time, but with consider-
able correlation among stages. Thus we modelled
sighting by letting p3 (sighting probability of mature
females) vary freely over time, and setting

      (62)

Each model was fit by maximizing the likelihood L in
(53). AIC values were calculated as 2 log L – 2 np,
where np is the number of parame t e r s .

The spectrum of �AIC values (AIC relative to
the minimum) is shown in figure 3. The time–
invariant model has the highest �AIC value; the
data clearly do not support constant vital rates.

Models including only a temporal trend or only
NAO dependence are also not supported. The best
model has time dependence of mother’s survival
and birth probability, and NAO dependence of all
three parameters.

The F matrix

Each female that becomes a mother (which hap-
pens with probability &43(t)

) produces a single
calf which, is female with probability 0.5. To be
counted as reproduction, the calf must survive
long enough to be catalogued. We assume that
this requires 6 months, and that the calf will die
during this time if its mother dies (which happens
with probability &54(t + 1)). Thus

      F13(t) = 0.5 &43(t) ( &54(t + 1) )0.5       (63)

Some demographic results

Combining Tt and Ft gives us a series of population
projection matrices At for each model. As an exam-
ple of the kind of results available, consider the
following.

A time–invariant model

Even though the data do not support a time–
invariant model, it is worth examining the resulting
projection matrix as the best single image of the
overall demography of the right whale during the
1980s and 1990s (64):

Fig. 2. Transition graph for the right whale (Fujiwara, 2002). Stages N1–N5 are females: N1. Calf; N2.
Immature; N3. Mature; N4. Mother; N5. Post–breeding. Stages N6–N8 are males: N6.Calf; N7. Immature;
N8. Mature; N9. Dead.

Fig. 2. Gráfico de transición correspondiente a la ballena franca (Fujiwara, 2002). Las fases N1–N5 son
hembras: N1. Ballenato; N2. Inmadura; N3. Madura; N4. Madre; N5. Post reproducción. Las fases N6–
N8 son machos: N6. Ballenato; N7. Inmaduro; N8. Maduro; N9. Muerto.
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The fertility elements of A are in bold face; the
transition matrix T has zeros in those entries and
the fertility matrix F is zero except for those entries.
The upper left submatrix describes production of
females by females, the lower right submatrix the
production of males by males, the lower left
submatrix the production of males by females, and
the upper right submatrix the production of females
by males.

T is the transient portion of an absorbing Markov
chain, with eventual absorbtion by death. Thus, the
(i,j) entry of the fundamental matrix

  N = ( I – T )–1       (65)

gives the expected number of time intervals spent
in stage j before absorbtion (i.e., death) by an
individual starting in stage i. Thus the column sums

of N give the life expectancies of individuals in
different stages (66):

Thus the life expectancy for a female calf is 32 years
(the sum of column 1); that for male calf is
18.4 years (the sum of column 6). This pattern,
with male life expectancy shorter than that of fe-
males, appears to be not unusual in cetaceans.

A female in stage 4 has just reproduced. The
inter–birth interval is the time before she repro-
duces again. This interval is infinite if she dies
before reproducing, so a meaningful average can
be calculated only from the distribution of interval
lengths conditional on reproducing again. The con-
ditional distribution is calculated from T by creat-
ing a new absorbing state ("reproduced before
dying"), calculating the probability of absorbtion in
this state rather than its competitor ("died before
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Fig. 3. �AIC values for 64 models fit to the demographic transitions of the right whale.

Fig. 3. Los valores �AIC correspondientes a 64 modelos se ajustan a las transiciones demográficas
de la ballena franca.
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reproducing"), and creating a conditional transi-
tion matrix T(c), conditional on absorbtion in this
state (Caswell, 2001, Chapter 5). This estimate
of T yields a median inter–birth interval of 4.0
years.

Combining F and T, we calculate the net repro-
ductive rate (the expected lifetime reproductive out-
put of a newborn female) as

R0 = dominant eigenvalue of FN (67)
= 2.18 (68)

The population growth rate, calculated from the
dominant eigenvalue of A, is

� = 1.025 (69)

that is, a growth of about 2.5% per year.
The elasticity of � to changes in the aij is shown

in figure 4. � is most elastic to changes in the
transitions representing survival and growth of
mature females, mothers, and inter–birth females.
Changes in fertility would have little effect on �.

Beyond time–invariance

The matrix A gives the best possible time–invariant
model, given the mark–recapture data from 1980–
1997. But the AIC values show it placing a dismal last
among all 64 models examined. Clearly the data do
not support a time–invariant model. A detailed analysis
of the whole family of models is not possible here
(Fujiwara et al., in prep.), but it is worth considering the
implications of some of the models.

Given a time–varying model, it is possible to
calculate � at each time, as a measure of the
quality of the environment at that time. This is a
hypothetical calculation, giving the rate at which
the population would be capable of growing if the
environment was fixed in the state it was in when
the vital rates were measured.

As in previous analyses (Fujiwara & Caswell,
2001), a model with a temporal trend in survival
and breeding probability was a great improvement
over the time–invariant model. The best model
(�AIC = 0) included the temporal trend in mother’s
survival and breeding probability, and NAO effects
on calf survival, mother’s survival, and breeding
probability. Figure 5 shows calf survival, mother’s
survival, and breeding probability as functions of
time for these two models. There has been a slight
decline in the first, and a dramatic decline in the
second and third of these quantities. The two mod-
els agree in the rate and amount of decline; the
best model adds some NAO–driven fluctuations
around the smooth trend of the time model.

These survival and transition estimates are only
the beginning. Figures 6 and 7 translate them into
trajectories of female life expectancy and net repro-
ductive rate, both of which have declined. The birth
interval has increased; figure 8 shows the mean
inter–birth interval implied by the two models; it has
increased from about 4 to about 7 years. Similar
patterns are shown by the median interval and oth-
ers measures of the time between births.

Figure 9 shows the population growth rates cal-

Fig. 4. The elasticity of � to changes in the elements of A for the time–invariant right whale model.

Fig. 4. La elasticidad de � frente a la presencia de cambios en los elementos de A para el modelo de
ballena franca invariable con el tiempo.
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Fig. 5. Temporal variation in calf survival,
mother survival, and birth probability in the
temporal trend model and the best model.

Fig. 5. Variación temporal en la supervivencia
de los ballenatos, de las madres y de la proba-
bilidad de nacimiento en el modelo de tenden-
cias temporales y en el mejor modelo.

culated from these two models, compared with the
value from the time–invariant model. Conditions for
the right whale appear have deteriorated since
1980. If conditions typical of the late 1990s were to
be maintained the population would be doomed to
extinction, since � < 1. It can be shown that the
decline in � is due mainly to the reduction in
survival of mothers. The best model, which in-
cludes NAO effects, creates variability around this
trend, but does not obscure it. The time–invariant
model, unsupported though it may be, yields a
value of � comfortably in the middle of the range
spanned by the time–varying models.

Although the vital rates and population growth
rates have changed dramatically, the results of
perturbation analysis have not. Figure 10 shows
one way of looking at this, presenting the elasticity
of � to changes in the survival probability of each
stage. While there has been a gradual decline in all
of them, the elasticity to survival of mature females
is consistently highest, followed by that to imma-
ture survival and survival of mothers or post–moth-
ers. The elasticity to � to calf survival is consistently
the lowest. It is encouraging that the all these
models point to the same target —improvement in
survival— for management actions.

Conclusion

These fragments of right whale demography only
begin to suggest the power of combining multi–state
mark–recapture analysis and matrix population mod-
els. All that is needed to take advantage of this
power is a model that includes a description of the
life cycle. We say "a" description advisedly, many
such descriptions are possible. Demographers may
be more accustomed to flexibility in defining stages
and structuring life cycles than are mark–recapture
practitioners. Given such a description of the entire
life cycle, all becomes possible. For example, in the
simplest case of a constant matrix:

1. From an estimate of the matrix �����, one can
estimate life expectancy, age–specific survival (even
if the model is stage– rather than age–classified),
and the distribution of inter–event times (e.g., in-
ter–breeding intervals).

2. The fertility matrix F, combined with �����, can
provide an estimate of the parameters in a multi–
type branching process, which permits a detailed
analysis of demographic stochasticity, including vari-
ability in population growth and probability of ex-
tinction (Caswell, 2001, Chapter 15).

3. In another direction, F and ����� together provide
estimates of the net reproductive rate R0, age–
specific fertility (even though model is stage–classi-
fied), generation time, and the stable age–within–
stage distribution.

4. Extracting the transition matrix T from ����� and
combining it with F gives an estimate of the popu-
lation projection matrix A from which both transient
and asymptotic dynamics can be estimated, includ-
ing population growth rate, stable stage distribu-

tion, reproductive value, and the sensitivity and
elasticity of those quantities.

5. If the model is density–dependent, the projec-
tion matrix provides the machinery for a complete
nonlinear analysis, including estimates of equilibria,
stability, resilience, reactivity, bifurcations, invasion
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exponents, and the sensitivity and elasticity analysis
of both equilibria and invasion exponents.

6. We have not emphasized spatial models, but
there are two directions in which matrix models

provide powerful analyses of demography and dis-
persal. If a population projection matrix (linear or
nonlinear) is combined with a distribution of disper-
sal distances, it is possible to estimate the invasion
wave speed as a measure of the ability of the
population to expand into previously unoccupied

Fig. 8. Temporal variation in the mean
interbirth interval, conditional on survival, in
the temporal trend model and the best model.

Fig. 8. Variación temporal en el intervalo
medio entre nacimientos, condicionada a la
supervivencia, en el modelo de tendencias
temporales y en el mejor modelo.

Fig. 9. The population growth rate � produced
by three models for the right whale.

Fig. 9. Tasa de crecimiento poblacional � ge-
nerada por tres modelos para la ballena fran-
ca.

Fig. 7. Temporal variation in net reproductive
rate R0 in the temporal trend model and the
best model.

Fig. 7. Variación temporal en la tasa neta de
reproducción R0 en el modelo de tendencias
temporales y en el mejor modelo.

Fig. 6. Temporal variation in female life
expectancy at birth in the temporal trend model
and the best model.

Fig. 6. Variación temporal en la esperanza de
vida al nacer en las hembras en el modelo de
tendencias temporales y en el mejor modelo.
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territory (Neubert & Caswell, 2002b). If matrices are
available for several sites and location is considered
as a state along with life cycle stage, then the
resulting multiregional model will describe both popu-
lation growth and distribution, including sensitivity
and elasticity of population growth rate to both de-
mographic and dispersal parameters (e.g., Rogers,
1995; Lebreton, 1996; Hunter & Caswell, 2003b).

Although some of these methods can be applied
to ����� even if it does not include the entire life cycle,
doing so provides only a small fraction of the
information that a complete demographic analysis
can provide. There is much to gain in our under-
standing of population dynamics by making the

estimation of demographic models a goal at the
outset of a mark–recapture study.

Open problems

We close by pointing out some unsolved problems.
We anticipate that this section will rapidly become
obsolete.

Because MR methods make it so natural to esti-
mate projection matrices as functions of environ-
mental covariates, it would be good to have a more
coherent theory for environment–dependent models.
The lack of theory is as much a problem of not
knowing the questions to ask as of not knowing how

Fig. 10. The elasticity of population growth rate � to changes in survival of each stage, in the constant,
time trend, and best models. Elasticities to changes in mother survival and post–mother survival are
identical.

Fig. 10. Elasticidad de la tasa de crecimiento poblacional � frente a la presencia de cambios en la
supervivencia de cada fase, en el modelo de efectos fijos, en el de tendencias temporales y en el mejor
modelo. Las elasticidades frente a la presencia de cambios en la supervivencia de las madres y en la
supervivencia tras haber sido madres son idénticas.
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to answer them, especially when the the environ-
mental dependence cannot be reduced to either
time–invariance or a stationary stochastic process.

Pradel’s (1996) approach to estimating the ob-
served rate of growth of a population (he originally
used ! for this quantity, but it has since regrettably
been denoted by �) is an important advance. Un-
derstanding the relation between a fully stage–
specific version of ! and the demographic �, both
obtained from multi–state mark–recapture analy-
sis, would be extremely useful (Nichols et al., 2000
have made a start). There are many reasons why a
population might fail to grow at its potential rate �
(e.g., a non–stable stage–distribution), but there
are few documented cases to generalize about (e.g.
Sandercock & Beissinger, 2002).

The task of estimating F deserves more atten-
tion. Including reproductive states in the life cycle
graph (as in the right whale) helps, but requires
information on fecundity to go with it. Perhaps
reverse–time mark–recapture analyses (Pradel,
1996) can help. Integrated modelling approaches,
in which mark–recapture and census data are com-
bined (Besbeas et al., 2002, 2003) could also pro-
vide estimates of F.

The estimation of density dependence is another
important problem. In principle, density should be
no different from any other external covariate. We
know of only one statistical analysis of bifurcation
patterns (in the flour beetle Tribolium (Cushing et
al., 2003), and it used inverse methods rather than
MR). There should be more.

Stochastic models are essential for understand-
ing the effect of environmental fluctuations on popu-
lation dynamics and persistence, but the estimation
of stochastic models by MR is in its infancy.
Bayesian methods for hierarchical random effects
models may contribute to solving this problem.
One challenge will be to identify appropriate distri-
butions for the necessary matrix–valued random
variates.

Finally, methods that integrate mark–recapture
and count information open up exciting possibili-
ties. Taken by itself, the inverse problem of deter-
mining a model from a time–series of population
estimates is usually poorly conditioned (because
there are many sets of parameters that can gener-
ate the same or nearly the same time–series).
Methods include transforming the matrix popula-
tion model into a nonlinear autoregressive model
with lognormally distributed errors (Dennis et
al., 1995), quadratic programming methods that
minimize the squared deviations between observed
and predicted time–series (Wood, 1997), methods
based on the Kalman filter and other state–space
approaches (Besbeas et al., 2002, 2003; De Valpine
& Hastings, 2002), and Bayesian methods (Gross
et al., 2002). Although in this venue we view count
data as strengthening the analysis of mark–recap-
ture data, it is just as legitimate to think of the
problem the other way around: mark–recapture
data can render an ill–conditioned inverse prob-
lem soluble.
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