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Abstract
Bayesian analysis of the Hector's Dolphin data.— In recent years there have been increasing concerns for
many wildlife populations, due to decreasing population trends. This has led to the introduction of
management schemes to increase the survival rates and hence the population size of many species of
animals. We concentrate on a particular dolphin population situated off the coast of New Zealand, and
investigate whether the introduction of a fishing gill net ban was effective in decreasing dolphin mortality. We
undertake a Bayesian analysis of the data, in which we quantitatively compare the different competing
biological hypotheses, determining the effect of the sanctuary upon the dolphin population.

Key words: Capture–recapture, Posterior model probabilities, Management schemes, Markov chain Monte
Carlo.

Resumen
Análisis bayesiano de datos del delfín de Héctor.— En los últimos años, ha aumentado la preocupación por
muchas poblaciones de fauna, como consecuencia del descenso observado en sus tendencias poblacionales.
Ello ha llevado a la aplicación de programas de gestión orientados a aumentar las tasas de supervivencia
y, por consiguiente, el tamaño de la población de numerosas especies de animales. Nos concentramos en
una población de delfines concreta, situada en la costa de Nueva Zelanda, investigamos si la aplicación de
una ley que prohíbe la utilización de redes de enmalle ha resultado eficaz a la hora de reducir la mortalidad
de los delfines. Llevamos a cabo un análisis bayesiano de los datos, en el que comparamos cuantitativamente
distintas hipótesis biológicas alternativas, y determinamos el efecto de la reserva en la población de
delfines.
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Monte Carlo de Markov.
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Introduction

We consider a detailed study relating to a population
of Hector’s dolphin (Cephalorhynchus hectori) lo-
cated around the coast of New Zealand. These
dolphins have been listed as an endangered spe-
cies, and so there is particular concern and interest
in identifying factors that influence their survival and
the corresponding effectiveness of any management
schemes to protect them. Our data concerns a
colony of dolphins from the Southern Island of New
Zealand around Bank’s Peninsula off the coast of
Akaroa. In this area, commercial gill nets are com-
monly used for fishing, and it is believed that these
may be a contributor to dolphin mortality (Dawsson
& Slooten, 1993; Slooten & Dawson, 1994). In an
attempt to reduce this threat to the dolphin popula-
tion, a sanctuary was placed around the peninsula in
1988. The sanctuary imposed a ban on the use of
gill nets within 4 nautical miles of the shore between
November to February, coinciding both with the peak
inshore commercial gill netting season and the pe-
riod when dolphins move closest to shore (Dawson,
1991; Cameron et al., 1999). We wish to investigate
whether this sanctuary was effective in terms of
decreasing dolphin mortality.

We begin in "Material and modelling" section  by
introducing the data that we have concerning the
dolphin population and by describing the manage-
ment scheme. We then describe the methodology
that we use in order to answer the question of whether
or not the sanctuary was effective. In "Results" sec-
tion we present the results, before concluding with a
Discussion.

Material and modelling

Data

Our data comprise multi–site capture–recapture
records, collected annually between 1985 and 1993.
The study site was divided into three locations:
locations 1 and 3 lie either side of the peninsula to
the South and West, respectively, and are sepa-
rated by region 2, which is the harbour area around
Akaroa. The data collection process involves a boat
going out to observe the dolphins within the inshore
waters of the different areas over a number of days
each year. Within each trip, individual dolphins
sighted are uniquely identified via markings on their
dorsal fin and/or body (see Hammon et al., 1990
for example). Our data comprises the capture his-
tories of each of 102 individuals, detailing the years
and locations that each dolphin is observed.

A total of 668 days are spent observing the
dolphins throughout the study period, with most
data collected within 4 month periods during the
summer season. The length of time spent by the
observers at each of the sites over the different
years is far from uniform. For example in 1986, 92
days are spent observing in area 2, whereas in
1989, no effort is expended in area 3. The number

of days that are spent each year observing dolphins
in each of the areas is given in table 1

With the large variation in the amount of effort
expended over the different years, and between the
different sites, there is also a large variation in the
number of dolphins that are observed over time and
location. In Section 2.2, we show how we are able
to explicitly account for catch–effort information in
modelling the recapture rates for the dolphins.

Modelling and notation

The data are assumed to be well described by the
Arnason–Schwarz model (see for example Schwarz
et al., 1993; Brownie et al., 1993; Dupuis, 1995;
Dupuis et al., 2002; King & Brooks, 2003b for
further details). Essentially, we assume that dol-
phins may move freely between the different areas
(independently of one another), but do not emigrate
outside the study area. In addition, an individual
dolphin’s movement between the different areas is
assumed to have a Markovian structure so that the
migration of an animal depends only upon its cur-
rent location and not upon its previous migration
history. As usual, we make the further assumption
that the observed individuals are representative of
the whole population.

Under the Arnason–Schwarz model, we express
the likelihood for our data as a function of the
survival, recapture and migration rates (see for
example, King & Brooks, 2003a). For this dataset
the parameters in the model are the survival,
recapture and migration rates, which we assume
may depend upon time, location, neither, or both.
We define: &t (r) – Prob (a dolphin in area r c  R at
time t survives until time t + 1); pt+1 (r) – Prob (a
dolphin in area r c R at time t + 1 is resighted at
this time); )t (r, s) – Prob (a dolphin in area r c  R
 at time t is in area s c R at time t + 1, given that
it survives until time t + 1) where R = {1,2,3} de-
notes the regions that the study area is divided
into, and t = 1985,...,1992. For notational conven-
ience, we set

&&&&& = {&t (r), r c R,  t = 1985,...,1992}

and similarly for p and ))))).
We represent different competing models, in

terms of the dependence of the parameters upon
the time and/or location, by placing different re-
strictions upon the parameters. For example, the
biological hypothesis that the survival rate re-
mains constant throughout the study, and is com-
mon to all areas would be represented by the
restriction,

&t (r) = &, for all r c R  and t = 1985,...,1992

Clearly, this model implies that the sanctuary had
no effect upon the survival rate of the dolphins.
Conversely, if we believed that the survival rate did
change at the time that the sanctuary was intro-
duced, then we may wish to consider the model
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with a change–point, so that

&t (r) = &a (r), for t = 1985,...,1987
&t (r) = &b (r), for t = 1988,...,1992

for example.
In this study, we are particularly interested in

whether or not the sanctuary that was introduced in
1988 had a significant impact upon the survival rates
of the dolphins. Thus, we impose the constraint that
there may be at most one change–point, which may
or may not occur at the time that the sanctuary was
introduced. Our class of models therefore comprises
models for which there is either no change–point
over time; or where there are the restrictions,

&t (r) = &a(r), for t = 1985,..., T–1
&t (r) = &b(r), for t = T,...,1992

for T = 1986,...,1992.
Finally, we need to define the possible location

dependencies. We allow all possible restrictions
upon the locations e.g., a common survival rate for
all locations, distinct survival in each area, or a
common survival rate for two different areas which
is distinct from the third. We identify these models
by defining the sets of areas with common survival
rates. For example, the model with a common
survival rate over areas is denoted by {1,2,3}, while
the model {1}, {2,3} denotes that there is a common
survival rate in areas 2 and 3, which is distinct to
that in area 1, and so on. Since we consider
change–point models here, we allow the location
restrictions to be placed independently on the sur-
vival rates both before and after the change–point,
if there is one. Thus, the dependence of the param-
eters upon location is conditional on the year.

For the recapture rates, we have additional infor-
mation relating to the amount of effort that was
expended in each location and year of the study.
We wish to incorporate this into the analysis, mak-
ing full use of all available information. Thus, we
specify the recapture rates as a function of the
corresponding effort taken in that year and location.
In particular, we assume that sightings in year

t = 1986,...,1992 and location r c R occur as a
Poisson process with general underlying recapture
intensity rate �t (r). Thus, we set,

pt (r) = 1 – exp [–�t (r) xt (r)]

where xt (r) denotes the catch–effort in year t and
location r. This can be reparameterised in the form

pt (r) = 1 – [1 – �t (r)]xt(r)

where �t (r) is directly interpretable as the underly-
ing recapture rate per unit time (i.e. day).

Allowing a complete spatio–temporal depend-
ence for the recapture intensity rates (i.e. having
distinct �t (r) parameters for each t = 1985,...,1992
and r c R) essentially reduces the model to that
with arbitrary recapture rates pt (r). However, we
consider special cases for the �t (r) parameter,
representing different possible models directly
analogous to those considered above for the sur-
vival rates, (i.e. a maximum of a single change–
point and all possible location dependencies). For
example, the model,

�t (r) = � (r), for t = 1986,...,1993

represents the system where the recapture inten-
sity rates depend only upon the location of the
dolphin, suggesting that the dolphins may be in-
herently more observable in some areas than oth-
ers; or that the observers themselves have more
(or less) information relating to the areas where
dolphins are most likely to be seen in each of the
designated areas. Note that for all models we
implicitly assume that the underlying recapture
rate for any given year is homogeneous over days
within that year.

We impose the same year constraints upon the
migration rates, as for the survival rates for similar
reasons as those discussed above. See King &
Brooks (2002) for further discussion of model struc-
tures. Discriminating between these competing mod-
els tells us about the underlying dynamics of the
system in terms of the possible effect of the intro-

Table 1. The amount of effort (in days) spent sighting dolphins in each of the study areas and years.

Tabla 1. Cuantificación del esfuerzo (en días) dedicado a avistar delfines en cada unas de las áreas de
estudio y años.

     Year

Site 1985 1986 1987 1988 1989 1990 1991 1992 1993

1 1 11 25 11 1 5 30 48 9

2 2 92 79 68 19 24 23 44 19

3 1 30 27 6 0 3 11 16 16
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duction of the sanctuary upon the survival and be-
haviour of the dolphins. We adopt a Bayesian ap-
proach here.

Bayesian analysis

Here we undertake a Bayesian analysis of the
data, in which inference is based upon the poste-
rior distribution of the parameters obtained by
combining the likelihood of the data given the
parameters, with the corresponding prior distribu-
tion placed upon the parameters (independently of
the data), via Bayes’ theorem. The prior distribu-
tion represents our beliefs concerning the param-
eters before observing any data. The posterior
distribution is then an update of these prior beliefs
having observed the data. The posterior distribu-
tion is, in general, very complex and so to obtain
any inference based upon the posterior distribu-
tion we use Markov chain Monte Carlo (MCMC) in
order to obtain estimates of the parameters of
interest (see for example Brooks, 1998).

Within our analysis, the nature and number of
parameters depends upon the model and, as well
as parameter estimation, we have the additional
issue of model uncertainty. This is of particular
interest in our case, since the different models
represent different competing hypotheses relating
to the effectiveness of the sanctuary —our primary
question of interest. Within the Bayesian paradigm,
we are able to incorporate model uncertainty by
considering the model itself to be an unknown
parameter which we wish to estimate. We are then
able to form the joint posterior distribution over
both parameter and model space. Since the poste-
rior distribution is defined over different dimensions
(i.e. for the different models), we use Reversible
jump MCMC (RJMCMC) in order to explore the
distribution. See Green (1995), Richardson & Green
(1997), and also King & Brooks (2003b) —in the
context of multi–site capture–recapture data— for
example. Using these methods, we are able to
construct a single Markov chain which can explore
the posterior distribution, and estimate summary
statistics, such as: (1) posterior model probabilities
for time and/or location dependence of the param-
eters; (2) the posterior probability of a change in
survival rate when the sanctuary is introduced; and
(3) model averaged statistics of interest, such as
posterior model–averaged survival rates, taking into
account model uncertainty (in addition to param-
eter uncertainty).

However, before we can undertake our analysis
we need to place suitable priors on the models and
their associated parameters.

Prior distributions

We do not have any prior information relating to the
survival or migration rates, and so we use vague
priors. In particular, for each model, we place a
U[0, 1] prior on each of the survival rates. For the
migration rates we use a Dir (2,2,2,) prior, corre-

sponding to an uninformative Jeffrey’s prior (Carlin
& Thompson, 1998, section 2.2.3; Jeffreys, 1961,
p 181). However, we consider the prior on the
recapture intensities in more detail.

Placing a prior on the recapture intensity rates
implicitly imposes a prior on the recapture rates,
which may be more directly interpretable. Thus, we
wish to place a prior on the recapture intensity which
is consistent with our beliefs concerning the recap-
ture rates. Since the recapture intensity is positive,
an obvious prior that we may wish to use is a
Gamma prior. We are then able to calculate the
corresponding prior on the recapture rates, using the
usual transformation of variables, as follows. Sup-
pose that we specify a  Γ(a,b) prior on �t (r). For ease
of notation, we assume that there is a common
underlying � for each year and location, and note
that the same prior will be used for the recapture
intensity rates across all possible models (i.e. area
and time dependence structures). Then, it can be
easily shown that the corresponding prior on the
recapture rates are of the form,

Placing a vague prior on � does not impose a
similarly vague prior on pt (r); for example,
Γ(0.001, 0.001) a prior is often considered to be
vague. However, in this case using such a prior on β
produces a prior on pt (r) (assuming xt (r) …………… 0), which
essentially places point masses at zero and one.

Conversely, it is obvious from equation (1) that if
we set � = 1 in the prior for �, then,

Suppose that we set,

then, the prior for the recapture rate will be flat (i.e.
U[0,1]), when the mean amount of time is spent
observing dolphins in the given year and location,
i.e. when xt (r) = 0. If a larger amount of time is
spent (i.e. xt (r) > 0), then the prior for the recapture
rate is skewed to the right, and there is more prior
mass on larger recapture rates. Otherwise, if a
lower amount of time is spent (i.e. xt (r) < 0), then
the prior for pt (r) is skewed to the left, and there is
more prior mass on lower recapture rates. We can
also explicitly calculate the prior mean and vari-
ance for the recapture rates, since,
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Clearly, there are many possible values of b that
we may wish to consider. For example, we may wish
to set b = median xt (r), or b = maxt,r xt (r). Prior
information may be able used to discern the most
appropriate form of b to take. Since we do not have
any prior information, we specify that �  ~ Γ(1, 0) a
priori, but note that the posterior distribution is fairly
insensitive to sensible choices of prior.

Finally, we need to place a prior on the models
themselves. For each of the parameters, we place
an equal prior probability on each possible age
dependence structure. For the recapture intensities
and the survival rates we place a flat prior across
each possible combination of strata independently
within each set of ages. Note that for the recapture
intensities and survival rates, the prior is not flat
over each individual model. Placing a flat prior
over the whole of the model space, so that each
individual model was equally likely a priori, would
result in a greater amount of prior mass on mod-
els with a single change–point compared to those
with a constant rate over time. For example, when
there are no change–points there are a total of five
possible location dependence structures as illus-
trated by the column headings of table 3. How-
ever, when there is a single change–point there
are five location–dependent models both for be-
fore and after that change–point and so 52 models
in total. Thus, putting a flat prior across all models
would make a change–point model five times more
likely than having no change–point, since there
are five times more change–point models than
there are models without a change–point.

We can then calculate the posterior distribution
of the parameters and use an MCMC procedure to
obtain estimates of the posterior statistics that we
are interested in. We assume that there is model
uncertainty relating to the survival and migration
parameters, and use the reversible jump algorithm
to move between the different possible models, as
above. Details of the MCMC procedure are given
in the appendix.

Results

We ran the simulations for a total of 1 million
iterations, with the first 100,000 discarded as
burn–in, and consider each set of parameters in
turn. Convergence is rapid for these simulations
and this is confirmed using standard diagnostic
techniques, see Brooks & Roberts (1998).

Survival rates

For the survival rates, we are particularly interested
in whether there is any evidence that they were
increased by the introduction of the sanctuary. Thus,
we are particularly interested in whether there is a
change–point in the survival rates, and if so, when
this change occurred in relation to the introduction
of the sanctuary. Within the Bayesian framework,
we are able to quantitatively compare the different
possible models, in terms of their posterior (mar-
ginal) model probabilities. These are presented in
table 2.

Table 2. The posterior marginal probabilities of no change–point and a change–point in each year for
the survival probabilities, recapture intensities and migration rates. Recall that the survival and migration
rates are defined for years 1985–1992, and the recapture intensities for years 1986–1993.

Tabla 2. Probabilidades marginales posteriores de ausencia de punto de cambio y presencia de punto
de cambio en cada año para las probabilidades de supervivencia, intensidades de recaptura y tasas
de migración. Recuérdese que las tasas de supervivencia y migración se han definido para los años
1985–1992, y las intensidades de recaptura para los años 1986–1993.

Posterior probability

Change–point  Survival rates Recapture intensities  Migration rates

None 0.314 0.175 0.180

1986 0.088 – 0.036

1987 0.036 0.241 0.155

1988 0.160 0.035 0.549

1989 0.136 0.421 0.041

1990 0.112 0.087 0.024

1991 0.069 0.069 0.010

1992 0.084 0.012 0.005

1993 – 0.012 –
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The marginal model with most posterior support
has a constant survival rate over all time, suggest-
ing that the introduction of the sanctuary had no
impact upon the survival rates of the dolphins.
However, the second most probable model a poste-
riori places a change–point at the time that the
sanctuary is introduced.

The model–averaged estimates of the survival
rates (together with 95% highest posterior density
intervals – HPDI’s) are given in figure 1, and sug-
gest a slow decreasing trend post–1987, in each
area. Thus, there appears to be little evidence that
the sanctuary was effective in decreasing the mor-
tality rate of the dolphins. The similarity between
survival rates within the different areas across all
years are indicative of the large posterior probabili-
ties that the survival rates are constant across
areas. These are presented in table 3). Clearly, the
most posterior support has a common survival rate
over the different areas: approximately 50% for all
years. Conversely, there is very little posterior sup-
port for distinct survival rates within each area.

Recapture intensities

There is some evidence that the recapture intensities
change over time within the study, as shown in
table 2. In particular the strongest support is for a
change–point in 1989 (42%) or 1987 (24%). The
evidence for a change–point is clearly seen in the
posterior means for the recapture intensities over
time in figure 2A, where there appears to be a large
increase in the recapture intensity from 1989 in
area 3. This not only coincides with the sanctuary
being introduced the previous year but also to a
relatively small amount of effort made in area 3
from 1989 onwards, compared with previous years
(see table 1), resulting in a much greater number of
dolphins observed in this area. Before 1989 only 3
dolphins are observed in area 3; from 1989, 24
dolphins are observed in area 3. There also ap-
pears to be a change in the posterior probabilities
for the location dependence from 1989 onwards for
the recapture rates, as shown in table 3.

The corresponding mean recapture rates are
given in figure 2B. We can see that the recapture
rates in area 2 are generally higher than those in
other areas. This is the harbour area of the penin-
sula, where most effort was actually made in
observing the dolphins. The dip in the recapture
rates for all areas within the middle of the study
corresponds to generally decreased effort spent in
observing the dolphins (see table 1).

Migration rates

The marginal posterior model probabilities for
the change–point models for the migration rates
are also given in table 2. Most posterior support
(55%) is for the model where there is a change–
point in the migration rates the year that the
sanctuary is introduced. This suggests that the
sanctuary may have influenced the behaviour of

the dolphins, in terms of their movement around
the peninsula. The change in the movement of
the dolphins is clearly seen in the model–aver-
aged estimates of the migration rates, presented
in figure 3. One possible reason for this may be
an indirect link with possible changes in fish
stocks in the area, due to the gill net fishing ban,
which may also have an impact upon the abun-
dance of different breeds of fish and marine
animals. However, further research would be
necessary in order to investigate this possibility.

The dolphins appear to predominantly stay in the
same areas, although there are some movements
between the different regions. This demonstrated
by the general dominance of the top line in each of
figures 3A–C.

Discussion

We consider multi–site capture–recapture data of
the Hector’s dolphins around the Bank’s Peninsula
in New Zealand. This species is endangered, and
we wish to assess the impact (if any) of the
management scheme placing a fishing gill net ban
around the shore–line of the peninsula during the
summer months. We have applied a Bayesian
analysis to the data collected. However, within our
analysis, there is little evidence to suggest that

Fig. 1. The posterior model–averaged mean
(*) and 95% HPDI (vertical lines) for the
survival rates over time: — Area 1; - - - Area 2;
····· Area 3.

Fig. 1. Media posterior del modelo promediado
(*) y 95% de HPDI (intervalos máximos de
densidad posterior) (líneas verticales) para
las tasas de supervivencia a lo largo del tiem-
po: — Área 1; - - - Área 2; ···· Área 3.
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Table 3. Posterior marginal probabilities or the arrangement of strata over time for the survival
probabilities and recapture intensities.

Tabla 3. Probabilidades marginales posteriores o disposición de los estratos a lo largo del tiempo para
las probabilidades de supervivencia y las intensidades de recaptura.

Strata groupings

Survival probabilities

Year {1}, {2}, {3} {1,2}, {3} {1,3}, {2} {1}, {2,3} {1,2,3}

1985 0.046 0.138 0.144 0.135 0.537

1986 0.035 0.138 0.132 0.133 0.562

1987 0.035 0.140 0.133 0.132 0.561

1988 0.041 0.152 0.134 0.138 0.534

1989 0.051 0.166 0.135 0.145 0.503

1990 0.059 0.170 0.136 0.154 0.482

1991 0.063 0.172 0.137 0.159 0.468

1992 0.070 0.178 0.142 0.164 0.446

Recapture intensities

1986 0.294 0.084 0.308 0.251 0.062

1987 0.322 0.055 0.243 0.356 0.025

1988 0.323 0.054 0.232 0.370 0.022

1989 0.322 0.252 0.047 0.368 0.011

1990 0.324 0.260 0.014 0.396 0.001

1991 0.324 0.262 0.012 0.398 0.005

1992 0.325 0.264 0.010 0.397 0.003

1993 0.324 0.263 0.011 0.396 0.005

Fig. 2. The posterior model–averaged mean (*) and 95% HPDI (vertical lines) for the recapture intensities
(A) and recapture rates (B) over time: — Area 1; - - - Area 2; ···· Area 3.

Fig. 2. Media posterior del modelo promediado (*) y 95% de HPDI (líneas verticales) para las
intensidades de recaptura (A) y las tasas de recaptura (B) a lo largo del tiempo: —. Área 1; - - -
Área 2; ···· Área 3.
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this sanctuary achieved its aim. On the contrary, if
there has been a trend in the survival rate this
appears to have been negative overall.

This, perhaps surprising, result may be a con-
sequence of other factors that may not have been
accounted for. For example, it is unclear as to the
effect that such a sanctuary would have upon the
whole of the local ecosystem. The increased fish
stocks that would be present within the inshore
waters once the ban was imposed may impact
upon both predators higher in the food chain (pos-
sibly attracting them to the area), and also other
marine animals competing for the same resources.
In addition, Slooten & Dawson (1994) identify
pollution as influencing the survival rates of the
dolphins. Thus, the sanctuary alone appears to be
ineffective in its attempt to improve the survival

rates of the dolphins, although it is possible that
had the sanctuary not have been introduced, there
may have been an even greater decline in the
survival rate of the dolphins. Some or all of these
factors could have been investigated by adopting
an alternative design incorporating controls for
each of these potential effects. Such designs (of-
ten referred to as BACI —before, after, control and
impact— designs) have significant advantages for
assessing management impacts and would have
improved the ability of the study to determine the
true effect of the sanctuary.

The movement of the dolphins between the differ-
ent areas does appear to change at the same time
that the sanctuary is placed around the peninsula.
Within our Bayesian analysis, this marginal model
has a posterior probability of 55%. This may be a

Fig.  3. The model-averaged (*) and 95% HPDI for the migration rates from area 1 (A), area 2 (B) and
area 3 (C). Lines denote movement to :  — Area 1; - - - Area 2; ···· Area 3.

Fig. 3. Modelo promediado (*) y 95% de HPDI para las tasas de migración de (a) el área 1 (A), el área
2 (B) y el área 3 (C). Las líneas indican movimiento hacia: — Área 1;  - - -. Área 2; ···· Área 3.
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result of the effect that the sanctuary had upon the
fish stocks in the study area, which may be more
evenly spread around the peninsula with the im-
posed fishing bans. Alternatively, the dolphins may
move more freely to areas which were previously
heavily populated with gill nets. Clearly, any such
hypothesis would need further investigation.

Finally, we note that there is some evidence
that the recapture intensities changed from 1989.
It is clear from figure 2A that this appears to be
largely due to the change in the recapture intensity
in area 3. This may be as a result of the observers
learning where the dolphins are more abundant in
area 3 from previous boat surveys in the study; or
possibly as a result of the sanctuary being intro-
duced and affecting the dolphins behaviour (possi-
bly moving further inshore or to slightly different
waters), and making them easier to observe.

Clearly, the sanctuary placed around the penin-
sula does not appear to be enough to improve the
survival rates of the dolphins. It would appear
unlikely that it would increase the mortality rate of
the dolphins, so this analysis suggests that there
are other (more predominant) factors that are
affecting the dolphins survival rates which need to
be addressed, in order to conserve this dolphin
population.
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Appendix. In order to explore and summarise the posterior distribution we use a reversible jump
Markov chain Monte Carlo algorithm. Essentially this involves constructing a Markov chain with stationary
distribution equal to the posterior distribution. Then, following an initial burn–in period, so that the
stationary distribution is reached, realisations of the chain can be regarded as a sample from the
posterior distribution and used to estimate summary statistics of interest. The reversible jump MCMC
algorithm consists of two different move types: one for updating the parameters; and the other for
updating the model itself.

Apéndice. Con la finalidad de explorar y resumir la distribución posterior, hemos utilizado un
algoritmo de Monte Carlo de cadena de Markov de salto reversible. En esencia, este algoritmo
implica construir una cadena de Markov con una distribución estacionaria equivalente a la distribución
posterior. Posteriormente, y después de un periodo inicial que permita llegar a una distribución fija,
las partes finales de la cadena pueden ser utilizadas como una muestra de la distribución posterior,
siendo entonces utilizada para estimar los estadísticos resumen en los que estamos interesados. El
algoritmo reversible de la cadena de Monte Carlo es de dos tipos: uno para actualizar los parámetros
y el otro para actualizar al propio modelo.

Within–model MCMC updates

We update each of the parameters in the model using the standard Metropolis–Hastings algorithm,
within each iteration of the Markov chain. In particular, we use a random walk Metropolis–Hastings
algorithm. Suppose that we are proposing to update the parameter &t (r). Then we propose parameter
&'t (r), such that &'t (r) = &'t (r) + � where, � ~ U[–�, �], with δ chosen via pilot tuning. We accept the
new proposed value with the standard acceptance probability (see for example Brooks, 1998). In
practice � = 0.1 appears to work well for both the survival rates and recapture intensities. This is
simply generalised when we have sets of times and/or strata grouped together.

We use an alternative Metropolis–Hastings update for the migration rates, since we need to retain the
sum to unity constraints. Suppose that for a given time t, we wish to update the parameter )t (r, s). Then
we randomly choose u c R \ s, and set,

)'t (r, s) = )t (r, s) + �
)'t (r, u) = )t (r, u) – �

where � ~ U[–v, v]
In practice we set v = 0.05. This move is accepted with the standard probability. Within each

iteration of the Markov chain we cycle through each age group and propose to update all r, s c R using
the above procedure.

Between–model (RJ) MCMC updates

To update the dependence structure of the recapture parameters, we need to use the reversible jump
algorithm to move between the different models, since the models are of different dimensions. The
reversible jump algorithm can be seen to be an extension of the Metropolis–Hastings algorithm,
allowing for movements between different states. Within each step of the Markov chain, we propose
to update: (i) the number of change–points on the survival rates, recapture intensities and migration
rates; (ii) the location of a change–point (if any) for each of the parameters; and (iii) the area
dependence on the survival rates and  recapture intensities for each age group.

We consider the different types of reversible jump updates in turn.

Adding/removing change–point

We initially consider the survival rates. If there is a constant survival rate, we propose to add a
change–point. Otherwise if there is already a change–point, we propose to remove it, since we only
consider models with a maximum of a single change–point. Initially, suppose that we propose to add
a change–point, so that the current model, denoted by m has a common survival rate over time, and
for simplicity we assume that the survival rate is also common over all areas, i.e.,
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&t (r) = & for all r c R and t = 1985,...,1992

Then we propose to move to the new model, m', with parameters,

&'t (r) = & + � for all r c R and t = 1985,...,T–1
&'t (r) = & – � for all r c R and t = T,...,1992

where T is randomly chosen in the interval {1986,...,1992}, and � ~ N(0,"2), for "2 chosen via pilot tuning.
Then, if any &'t (r) v [0,1] the move is automatically rejected, else it is accepted with probability,

where π(⋅|⋅) is the posterior distribution over parameter and model space evaluated at the given
parameter values; |J| a Jacobian term, which is equal to 2 in this case; P(m'|m) = 1/7 is the
probability that given that we are in model m, we propose to move to model m' with a change–point
at time T (for which there are seven possible choices, each chosen with equal probability), and q(�)
is the corresponding Normal proposal density. Clearly this approach can be generalised for any
given location dependence, with the restriction that the new survival rates before and after the
change–point have this same location dependence, with the corresponding changes to the Jacobian
term. Note that in general |J| = 2k, where k is simply the number of distinct survival rates over the
locations.

Alternatively, in the reverse move, to retain the reversibility conditions, we only propose to remove
the change–point if the location dependence is the same over all times. Then the proposed survival
rate is simply taken to be the mean of the survival rates either side of the change–point for each area.
The corresponding acceptance probability is simply the reciprocal of equation (2).

The analogous update is used for the recapture intensity, with the restriction that the proposed
recapture rates are positive. We set "2 = 0.1 and 0.01 for the survival rates and recapture intensities
respectively.

However, we need to consider a different updating procedure for the migration rates, since we need
to retain the restriction that the migration rates sum to unity. Again, suppose that we propose to add
in a change–point to the current model m, with migration rates )(r, s), r, s c R (recall that R = {1,2,3}).
Then, for r c R and s = 1,2, we propose the parameters in the new model to be,

)'t (r, s) = )t (r, s) + � (r, s) for all r c R and t = 1985,...,T–1
)'t (r, s) = )t (r, s) for all r c R and t = T,...,1992

with probability 1/2; else we set,

)'t (r, s) = )t (r, s) for all r c R and t = 1985,...,T–1
)'t (r, s) = )t (r, s) + � (r, s) for all r c R and t = T,...,1992

Here, T chosen uniformly in [1986,...,1992], and, � (r, s) ~ N (0, "2), where "2 is chosen via pilot
tuning. In this case we set "2  = 0.1. Essentially, we are simulating a new set of migration rates for
either before or after the change–point, which are similar to their current values, while the others
remain the same. We also set,

to ensure that the migration rates sum to unity. If any &'t (r, s) v [0,1], then we automatically reject the
move, else we accept the move with the acceptance probability,

Here |J| = 1, P(m'|m) = 1/2 x 1/7; P(m'|m) = 1/2 and  q(�����) denotes the Normal proposal density for the
set of parameters ����� = {� (r, s): r c R, s = 1,2}.

Appendix. (Cont.)
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Location of change–point

Initially, consider the survival rates. Then, within this updating procedure, we propose to update the
location of the change–point if there is one present. Suppose that we are in the model with the
change–point at time T, so that,

&t (r) = &a (r) for all r c R and t = 1985,...,T–1
&'t (r) = &b (r) for all r c R and t = T,...,1992.

Then we propose to move to model m' by updating the change–point to time T' = T ! 1. If
T' v [1985,...,1992], we reject the proposal; else we set,

&'t (r) = &a (r) for all r c R and t = 1985,...,T'–1
&'t (r) = &b (r) for all r c R and t = T',...,1992

We then accept the proposed move with the standard Metropolis–Hastings acceptance probability, i.e.,

We use the analogous updating procedure for the recapture intensities and migration rates.

Updating area dependence

Initially consider the survival rates and assume that there is no change–point; else, if there is a
change–point, then we update the location dependence before and after the change–point independ-
ently of each other. We assume that there is a common survival rate over time and location, i.e. the
area dependence is denoted by {1,2,3}. Then, we propose to update this area dependence, by
splitting the group into two: there are three possibilities {1}, {2,3}; {1,3}, {2}; and {1,2}, {3}. We
choose each one with equal probability, without loss of generality suppose that we propose to move
to model {1}, {2,3}. Then, for the new model m', we propose the parameters,

&'t (r) = &t (r) + * for r = 1 and t = 1985,...,1992
&'t (r) = &t (r) – * for r = 2, 3 and t = 1985,...,1992

where, * ~ N (0, τ), for τ chosen via pilot tuning. We reject the proposed move if any &'t (r) v [0,1], else,
we accept the move with probability,

where the Jacobian |J| = 2; P(m'|m) denotes the probability of moving to model m' from model m and
q(*) the Normal proposal density for the simulated parameter *. Here, P(m'|m) = 1/3, since we can
only increase the dimension of the model, and, P(m|m') = 1/2, if in model m' = {1}, {2,3} we propose
to decrease, or increase, the dimension of the model to {1,2,3}, or {1}, {2}, {3}, with equal probability.
Once more, to retain the reversibility condition, the reverse move is deterministically defined by this
move. In particular, we set the new survival rate to be the mean of the current values, and accept the
move with probability equal to the reciprocal of the above. The analogous move holds when proposing
to move to the model with distinct survival rates over all areas.

We apply the analogous move to the recapture intensities, restricting the parameter values to be
simply  > 0. Pilot tuning suggests setting τ = 0.1 for both the survival rates and recapture intensities.
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