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Abstract
Application of integrated Bayesian modeling and Markov chain Monte Carlo methods to the conservation of
a harvested species.— When endeavoring to make informed decisions, conservation biologists must
frequently contend with disparate sources of data and competing hypotheses about the likely impacts of
proposed decisions on the resource status. Frequently, statistical analyses, modeling (e.g., for population
projection) and optimization or simulation are conducted as separate exercises. For example, a population
model might be constructed, whose parameters are then estimated from data (e.g., ringing studies,
population surveys). This model might then be used to predict future population states, from current
population estimates, under a particular management regime. Finally, the parameterized model might also
be used to evaluate alternative candidate management decisions, via simulation, optimization, or both. This
approach, while effective, does not take full advantage of the integration of data and model components for
prediction and updating; we propose a hierarchical Bayesian context for this integration. In the case of
American black ducks (Anas rubripes), managers are simultaneously faced with trying to extract a
sustainable harvest from the species, while maintaining individual stocks above acceptable thresholds. The
problem is complicated by spatial heterogeneity in the growth rates and carrying capacity of black ducks
stocks, movement between stocks, regional differences in the intensity of harvest pressure, and heteroge-
neity in the degree of competition from a close congener, mallards (Anas platyrynchos) among stocks. We
have constructed a population life cycle model that takes these components into account and simultane-
ously performs parameter estimation and population prediction in a Bayesian framework. Ringing data are
used to develop posterior predictive distributions for harvest mortality rates, given as input decisions about
harvest regulations. Population surveys of black ducks and mallards are used to obtain stock–specific
estimates of population size for both species, for inputs into the population life–cycle model. These
estimates are combined with the posterior distributions for harvest mortality, to obtain posterior predictive
distributions of future population status for candidate sets of regional harvest regulations, under alternative
biological hypotheses for black duck population dynamics. These distributions might then be used for both
the exploration of optimal harvest policies and for sequential updating of model posteriors, via comparison
of predictive distributions to future survey estimates of stock–specific abundance. Our approach illustrates
advantages of MCMC for integrating disparate data sources into a common predictive framework, for use
in conservation decision making.
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Resumen
Aplicación de la modelación integrada bayesiana y de los métodos Monte Carlo basados en cadenas de
Markov para la conservación de una especie recolectada.— En el momento de tomar decisiones bien
fundamentadas, es habitual que los biólogos conservacionistas deban enfrentarse a fuentes de datos
dispares e hipótesis alternativas acerca de los impactos probables que tendrán las decisiones propuestas
en el estado del recurso. A menudo, tanto los análisis estadísticos, como la modelación (para la proyección
poblacional, por ejemplo) y la optimización o simulación, se llevan a cabo como ejercicios independientes.

Application of integrated Bayesian
modeling and Markov chain Monte
Carlo methods to the conservation of
a harvested species

C. J. Fonnesbeck & M. J. Conroy



268 Fonnesbeck & Conroy

Así, es posible que se construya un modelo poblacional, cuyos parámetros se estimen a partir de datos
(como estudios de anillamiento y estudios poblacionales). Posteriormente, cabe la posibilidad de que este
mismo modelo se emplee para predecir situaciones demográficas futuras a partir de las estimaciones de
población actuales, utilizando para ello un sistema de gestión determinado. Por último, el modelo
parametrizado también puede emplearse para evaluar posibles decisiones de gestión alternativas, a través
de la simulación, la optimización, o ambos procedimientos. Si bien este enfoque resulta eficaz, no
aprovecha al máximo la integración de datos y los componentes de los modelos para la predicción y
actualización. En este estudio proponemos un contexto bayesiano jerárquico que permite efectuar dicha
integración. En el caso del ánade sombrío americano (Anas rubripes), los gestores deben enfrentarse a la
labor de intentar extraer una recolección sostenible de la especie, al tiempo que mantienen los stocks de
individuos por encima de umbrales aceptables. El problema se ve agravado por la heterogeneidad espacial
que presentan las tasas de crecimiento y la carga cinegética de los stocks de ánades sombríos, el
movimiento entre los stocks, las diferencias regionales en la intensidad de la presión recolectora y la
heterogeneidad en el grado de competencia por parte de un congénere cercano —el ánade real (Anas
platyrynchos)— entre los stocks. Hemos formulado un modelo del ciclo vital de la población que toma en
consideración estos componentes, al tiempo que permite llevar a cabo una estimación de los parámetros
y una predicción de la población en un marco bayesiano. Los datos de anillamiento se emplean para
desarrollar distribuciones predictivas posteriores para las tasas de mortalidad durante la recolección,
expresadas como decisiones de entrada acerca de la normativa sobre recolecciones. Los estudios
poblacionales del ánade sombrío y del ánade real se emplean para obtener estimaciones sobre el tamaño
poblacional específicas de los stocks de ambas especies, que se emplearán como entradas para el modelo
del ciclo vital de la población. Dichas estimaciones se combinan con las distribuciones posteriores para la
mortalidad durante la recolección, con el propósito de obtener distribuciones predictivas posteriores de la
situación demográfica futura para posibles conjuntos de normativas regionales acerca de la recolección, de
acuerdo con hipótesis biológicas alternativas relativas a la dinámica poblacional del ánade sombrío. En una
fase posterior, tales distribuciones pueden utilizarse tanto para la investigación de políticas óptimas en
materia de recolección, como para la actualización secuencial de distribuciones posteriores del modelo
mediante la comparación de distribuciones predictivas para estimaciones en estudios futuros acerca de la
abundancia poblacional presente de forma específica en los stocks. Nuestro enfoque ilustra las ventajas
que presentan las técnicas de Montecarlo basadas en cadenas de Markov (MCMC) para integrar fuentes de
datos dispares en un marco predictivo común, con vistas a su utilización en la toma de decisiones sobre
conservación.

Palabras clave: Análisis bayesiano, Modelo integrado, Modelo jerárquico, Recolección, MCMC, Aves
acuáticas.
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ages among these elements; pragmatically, there
are also strong arguments for integration. For in-
stance, dynamic optimization models include both
state dynamics and an objective function. In turn,
data are required to estimate system states and
state dynamics, and to assess model comportment
to reality, which in turn should influence decision
making. Because these elements typically depend
upon a common data structure, and involve
modeling, there is practical motivation for an inte-
grated approach that leverages shared information.
In this paper, we first construct a conceptual frame-
work for integrating process modeling, parameter
estimation, and model prediction, based on princi-
ples of conditional hierarchical modeling. We then
demonstrate the approach using a real decision
problem, involving optimal harvest management of
multiple stocks of American black ducks.

Methods

A generic decision model

We clarify these concepts by means of a generic
decision model. To begin with, consider a dynamic
system in which the state Xt (possibly vector–
valued) evolves through time according to a speci-
fied process model f (Xt*Zt), which includes both
the endogenous effect of the state, as exogenous
factors Zt, such as weather; the latter are fre-
quently modeled as random variables (fig. 1). Add
to this model inputs from the vector of decisions
dt, which potentially affect both transitions to fu-
ture states and the utility gained from present and
future states (possibly altered under management).
Before proceeding further, we wish to use this
generic model to reinforce our earlier points. First,
figure 2 makes clear that the modeling of decision
influences (both on the system itself and our ob-
jective gain from the system) are inextricably linked
to the process model. In addition, any algorithm
that seeks to find decisions which optimize the
objective functional is constrained by system dy-
namics. That is, it is impossible to obtain the
maximum of a dynamic decision problem without
taking into account system dynamics. Finally, dy-
namic decisions are often subject to a finite time
horizon. In natural resource management it is
usually appropriate that this horizon is relatively
distant. Decisions are made, usually with feed-
back from the current system state, in order to
seek an optimal result over an appropriately long
time horizon. Although simple conceptually, this
integration of dynamic modeling with decision
making is complex in practice. Further, decisions
ordinarily cannot be based directly on the system
states and a model, but rather on statistical esti-
mates of the states, and of the parameters of the
model. Thus, the actual system state being
modeled evolves through time according to some
(assumed) model. The observed system state is
related to the actual system according to a statis-

Introduction

Dynamic models frequently are used in conserva-
tion biology to aid in the evaluation of alternative
conservation decisions, with respect to obtaining
some desired outcome. Such approaches ordinarily
employ, whether explicitly or not, several elements:
First, a process model is used to describe how
observed system states, such as population size
and composition, change through time. Second,
system states and relevant parameters such as
survival and recruitment rates must be estimated
using data, via one or more statistical models.
Third, one or more control variables must be de-
fined; these are thought to influence the system in
such a way as to lead to gains in the management
objective. Examples of decisions that are frequently
made, and to which decision modeling may be
applied, include determination of optimal harvest
regulations, setting of forest cutting policies, the
timing and intensity of restocking efforts as compo-
nents of endangered species conservation, and
decisions about land acquisition for conservation.
Fourth, we need an explicit way of describing the
relative value or utility of potential management
outcomes. That is, either explicitly or implicitly,
there is some overarching resource goal and quan-
tifiable resource objective in any decision–making
process. For harvest decisions the objective typi-
cally is the maximization of long–term harvest yield;
for forest cutting the objective may be the gain of
revenue, perhaps subject to constraints on the avoid-
ance of loss of biodiversity; for restocking efforts,
perhaps the maximization of the expected time to
extinction for some species; for land acquisition,
perhaps the maximization of biodiversity conserva-
tion under budgetary constraints. Finally, we need a
procedure that seeks some optimum combination
of decisions and system conditions. Formal proce-
dures exist for all these elements; in ecology, there
is a particularly rich literature focused on dynamic
modeling and statistical estimation methods, much
of which is summarized in Williams et al. (2002).
Likewise, there exists an extensive literature on
decision theory and, dynamic optimization methods
and optimal control theory, much of it also summa-
rized by Williams et al. (2002). However, in our
experience, process modeling, statistical estima-
tion, and decision analysis are often considered as
distinct enterprises. Thus, statistical models are
frequently used to estimate population states and
other parameters; these results may subsequently
be incorporated into an existing or newly con-
structed population model. The parameterized model
then may be applied to a decision problem, for
instance, by exploratory simulation or formal opti-
mization procedures. Although the sequence of
events differs from cases to case (e.g., model
constructed first, followed by parameter estimation
and optimization), the idea is the same: component
elements are treated separately, and integration (to
the extent it occurs at all) is usually post–hoc, and
often ad–hoc. Philosophically, there are close link-
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tical sampling model. Parameters of the process
and decision models are now themselves based
on estimates from one or more statistical sampling
models, providing a prediction given the current
(observed) state (fig. 3):

(1)

Predictions about the future state of the system
now inherit statistical uncertainties due these statis-
tical models, as do predictions about utility under
each candidate management decision.

The development so far has assumed that the
mathematical form and parametric structure of the
process model are known. Usually this will not be

the case, therefore it will be important to consider
alternative process models. In the context of deci-
sion making, these alternative models become
important to the extent that the utility of decisions
is dependent on belief in the alternate models.
Suppose we entertain a single alternate model,
denoted as Model 2 (fig. 4). Identical observed
system states and candidate decisions induce two
sets of values for the predicted utility and pre-
dicted system state, one set under each model.
Given these alternate predictions, the decision
maker must first reconcile the fact that different
models may lead to different utility for each deci-
sion; thus, the optimal decision may be different
for each model. One approach is to form an

Fig. 2. Incorporation of decision variables and objective function into the stochastic process, showing
feedback of future state upon the objective.

Fig. 2. Incorporación al proceso estocástico de variables de decisiones y de la función objetiva,
indicando el feedback del estado futuro con respecto al objetivo.
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Fig. 1. Modelo genérico de un proceso dinámico con efectos aleatorios.
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expectation of utility across the models, which in
turn depends on model probabilities quantifying
relative belief in each model. Initially, model prob-
abilities may be impartial, attributing equal weight
to each candidate model.

Finally, following decision making, monitoring
data are used to compare the predictions under
each model for observed future states (fig. 3).
These predictions and observations have at least
two potential uses: (1) they provide an obvious
means of evaluating the degree to which any of
the predictive models performs (i.e., validation),
as well as a means of discriminating among com-
peting models. As we will describe, this leads to a
natural way to update relative belief in the alter-
nate models, using Bayes factors; (2) as noted
above, optimal decisions and their utility will gen-
erally differ among alternate process models. Thus,
to the degree that uncertainty exists with respect
to which model best describes and predicts the
process, prescribed decisions will be suboptimal;
conversely, reduction of process uncertainty
through time will result in improved decision mak-
ing at future decision–making epochs.

Sequential conditioning as a tool for integration

Our approach to this problem exploits well–known
and related principles of probability, Bayesian infer-
ence and conditional modeling. In Bayesian infer-
ence, parameter values � and observations Y are
both modeled with probability density functions, so
it makes sense to consider their joint probability Pr
(�, Y)

        (2)

Because for any sample outcome the probability
of the data is a constant, Bayes’ theorem states
that the posterior (that is, following sampling) prob-
ability of � is proportional to the product of the
sampling distribution of the data assuming � and
the prior (unconditional) probability of �:

        (3)

This formulation is readily generalized to alter-
native model forms. Conditional modeling has in-
creasingly been recognized as a powerful tool for
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Fig. 3. Relationship between actual and observed/estimated processes in a dyanmic system.

Fig. 3. Relación entre los procesos reales y los observados/estimados en un sistema dinámico.
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Fig. 4. Alternative process models and predictions. Following decision making, monitoring data are
obtained for comparison of the predictions under each model to observed future states. These
predictions may then be used to compute Bayes factors for updating the relative belief in the alternate
models, for use in the next decision–making epoch.

Fig. 4. Modelos de procesos alternativos y predicciones. Tras la toma de decisiones, se obtienen datos
de control para comparar las predicciones facilitadas por cada modelo con los estados futuros
observados. Estas predicciones pueden utilizarse para calcular factores de Bayes y actualizar la
creencia relativa en los modelos alternativos, con vistas a su utilización en el siguiente período de toma
de decisiones.

modeling complex ecological relationships by de-
composition as simpler element that are related in a
conditional, often hierarchical, manner (e.g., Wikle,
2003). In addition, hierarchical processes naturally
lend themselves to conditional sequencing.

These ideas can be effectively combined to solve
our generic decision problem in an adaptive, se-
quential updating model, by expressing the prob-
lem as:

        (4)

where M represents model structure, � are param-
eter values,  is the predicted and Y the observed
system state. By sequential conditioning we can
see that:

        (5)

This decomposition provides a natural, sequen-
tial way of dealing with the complexity of simulta-
neously modeling uncertainty in data, models, and
processes. Beginning with the right–most term in
(5), conditioned on a distribution of parameter
values Pr(�), we have predicted values . Next in

this sequence is the probability of model M, and
finally the likelihood of the data, given the model,
parameter values, and predictions. We use Markov
chain Monte Carlo (MCMC) methods to sample
from the conditional posterior distributions of the
quantities we seek (e.g., models, predictions). Al-
though not explicitly explored in this paper, condi-
tional decomposition is readily extended to deci-
sion making problems, by incorporating a utility
function.

Integrated modeling with Markov chain Monte
Carlo methods

Markov chain Monte Carlo is a class of general
simulation techniques used primarily to solve prob-
lems of Bayesian inference (Gamerman, 1997).
Specifically, these methods are used to generate
samples that are distributed according to some
target posterior form �(�) without having to directly
sample from the posterior itself. This is most useful
when �(�) is extremely complex, or otherwise diffi-
cult to analyze. For example, the joint posterior
characterizing our problem in (5) can be analytical
intractable for many biological problems
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All MCMC algorithms produce samples from a
set of densities (hence, Monte Carlo simulation);
these distributions are derived from �(�), according
to the conditional probability of each �i. The current
set of parameter values       is dependent on the
previous values           , thereby generating a
Markov chain. The Markov chain is constructed in
such a way that its limiting distribution, �(�), is the
distribution of interest.

The Metropolis–Hastings algorithm (Metropolis
et al., 1953; Hastings, 1970) is the most general
MCMC procedure, and therefore the most widely
applicable. The Metropolis–Hastings algorithm esti-
mates the posterior density using a form of rejec-
tion sampling (see Robert & Casella, 1999). The
proposal function q(&*�) generates candidate val-
ues for �(�) which are accepted or rejected accord-
ing to each value’s probability under the target
. Provided that the full support of �(�) may be
sampled, the choice of  q can otherwise be arbi-
trary. In any case, the Metropolis–Hastings algo-
rithm estimates the posterior form directly from a
subset of filtered samples, rather than relying on
Bayes’ rule and conjugate distributions.

Case study: integrated estimation and prediction
for American black ducks

To illustrate our approach we use an example of an
adaptive decision–making model for American black
ducks. The black duck problem involves a process of
observation, predictive modeling, and optimization,
with the following major elements: (1) historical data
have been used to fit empirical relationships between
population parameters and key hypothesized factors,
under alternative models; (2) a population projection
model incorporates key relationships into a discrete–
time projection model; (3) population surveys are
used each year to infer the state of the system; (4)
based on the surveys, parameter estimates, and the
projection model, a forecast of system state and of
expected utility is obtained; (5) the forecast of system
state is compared to observed system state at the
next time epoch in order to evaluate the relative
predictive ability of the alternative models and com-
pute relative weights for each model; and (6) the
parameter estimates, models, and model weights are
used in dynamic optimization procedures (e.g. Lubow,
1995) to obtain optimal, state–specific decisions for
maximizing expected utility.

The models and data structures used are an
extension of those described in Conroy et al. (2002)
to multiple stocks, and is illustrated in schematic
form in figure 5. The elements of this model are
summarized as follows: (1) the observed system
state is the number of black ducks (Ni) and mal-
lards (Mi) in each of three geographic strata (west-
ern, central, and eastern portions of the range in
Canada), as estimated from surveys conducted by
the Canadian Wildlife Service; (2) historical data
involving band recoveries, hunter surveys of wings
collected from shot ducks, and population sur-
veys, are used to estimate the relationship be-

tween stratum–specific fall age ratios (Ai) and
black duck and mallard abundance, under alterna-
tive models of density–dependence and density–
dependence with competition (Zimpfer, 2004;
Conroy et al., 2002); (3) historical data involving
band recoveries and population surveys are used
to estimate the relationship between non–harvest
survival (Sb

j) and black duck abundance, under
alternative models of density–dependent (com-
pensatory) and density–independent (additive) mor-
tality (Conroy et al., 2002); (4) the fall age ratios
calculated above, together with spring–to–sum-
mer survival(Sb, assumed constant) are used to
project fall abundance in each breeding area prior
to migration (Fn

j); (5) historical data involving band
releases stratified by breeding and harvest areas,
and recoveries and recaptures stratified by har-
vest and breeding areas, are used to estimate
rates of movement from breeding to harvest areas
()ij), and of return (fidelity) to breeding areas (&ji;
Zimpfer, 2004); (6) historical data involving band
recoveries, harvest regulations, and hunter num-
bers stratified by harvest regions, are used to
develop predictions of harvest rates conditional on
harvest regulations and hunter numbers.

For the purposes of this study, we assumed
fixed values for the parameter estimates of non–
harvest survival (Sa,Sb) and movement ()ij,&ji)
rates, and perfect ability to control harvest rates at
specified values via harvest regulations. We fur-
ther conditioned on the observed system state
Xt = [N1, N2, N3, M1, M2, M3]t. Thus, focus is on
uncertainty in stratum–specific estimates of age
ratio, which, in turn, induce uncertainty in the
projection model, from two sources: statistical un-
certainty in the parameter values, conditioned on
an assumed model structure Pr(�*M), and uncer-
tainty in model structure Pr(M). Predictions under
these alternative, estimated models are then com-
pared to observations of the consequent states of
system Xt. Stratum–specific age ratios are esti-
mated under a joint likelihood of wing survey and
band recovery data (fig. 6). This consists of the
following components:

                (6)

where Wy is the number of juvenile wings in the
harvest survey for a specific reproduction area, W
is total (adult + juvenile) wings, {mi, Ri; i = y, a}
are number of recoveries and bands, respectively,
for juveniles and adults, {hi; i = y, a} are band
recovery rates, $ is relative vulnerability of adult to
juvenile harvest, and � is proportion of young in the
harvest (adjusted from population age ratio A by $.
These likelihoods are, in turn, embedded in a model
describing the relationship between age ratio and
black duck and mallard abundance:
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        (7)

where {�i} are coefficients to be estimated. Har-
vest rates could not be directly estimated during
the period of our study, because of problems
induced by the conversion to toll–free solicitation
of bands (see Conroy et al., 2002). We instead
used estimates from hunter surveys in the U.S.
and Canada to obtain an estimate of total annual
harvest per harvest region Ht, which was as-
signed to age and sex categories in our model

according to differential vulnerability estimates $.
These estimates were used together with the
projected pre–harvest population in each region
(according to our process model) to estimate
harvest rates and harvest mortality, with the con-
straint that the latter could not exceed unity.
Conditioned on observed Yt = (Nt, Mt, mgt, mst,
Wgt), we used our process model to generate
posterior predictions of stratum–specific abun-
dance for black ducks at the next survey period
by the relationship

Fig. 5. Flow diagram of black duck state dynamics model. Stratum–specific numbers of black ducks
(Ni, i = 1,2,3) survive from spring to fall at the constant rate Sa. Stratum–specific black duck and
mallard (Mi) abundance influence fall age ratios Ai according to a production model (see (6) for details;
age ratios are applied to the surviving adult population to determine fall abundance prior to migration
and harvest (F(s)

i). Surviving birds migrate to southern harvest/wintering areas j = 1,2,3 according to
fixed rates )ij, with post–harvest  (Hi) abundance leaving Nj, j = 1,2,3 in each wintering area. Survival
over winter (Sb

j) is determined by a density–dependent model as a function of area–specific abundance
N(w)

j, with fidelity to breeding areas at a fixed rate &ij. In present study movement and survival
parameters are fixed, with only the parameters of the reproduction estimation and prediction model (6)
estimated from data.

Fig. 5. Diagrama de flujo del modelo de la dinámica del estado del ánade sombrío. Los números de
ánades sombríos específicos al estrato  (Ni, i =1,2,3) sobreviven de primavera a otoño a una razón
constante de Sa. La abundancia de ánades sombríos y ánades azulones específica al estrato (Mi)
influye en las tasas de edad durante el otoño Ai según un modelo de producción (para detalles, ver (6);
las tasas de edad se aplican a la población adulta superviviente para determinar la abundancia otoñal
antes de la migración y la recolección (F(s)

i). Las aves supervivientes migran hacia áreas de
recolección/hibernación meridionales j = 1,2,3 según tasas fijas )ij, de manera que la abundancia
posterior a la recolección (Hj) deja Nj, j = 1,2,3 en cada área de hibernación. La supervivencia durante
el invierno (Sb

j) viene determinada por un modelo dependiente de la densidad como una función de la
abundancia específica a un área N(w)

j, con fidelidad a las áreas de reproducción a una tasa fija &ij. En
el presente estudio, los parámetros de movimiento y de supervivencia son fijos, de manera que los
parámetros del modelo de predicción y de estimación de reproducción (6) son los únicos que se
estiman a partir de los datos.

Ni    Mi

  Fi
(n) = NiS

(1)(1 + Ai) Ai     = exp (�����0 + �����1Ni + �����2Mi)

S(a)

Fj
(s) Hi

Nj
(w)

S(b)&&&&&ji )))))ij
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Fig. 6. Model for black duck reproduction estimation and prediction using non–integrated (top) and
integrated (bottom) frameworks. Binomial likelihoods (ellipses) are calculated for proportion of juveniles
in the harvest (�) from wing recovery data (W), and for stage–specific harvest rates (h) based on
bandings (R) and dead recoveries (X). These are, in turn, used to calculate age ratios (A) that form the
basis for the reproduction model, which includes density–dependent terms for black ducks (B) and
mallards (M). This, along with a fixed survival function, is then used to predict the next year’s population
size. The integrated form is identical to the non–integrated, except that the predicted population is now
part of a multivariate log–normal likelihood, as the expected value of the observed population size. Each
integrated model incorporates zero or more bias parameters (�).

Fig. 6. Modelo para la predicción y estimación de reproducción del ánade sombrío utilizando marcos
no integrados (parte superior) y marcos integrados (parte inferior). Las probabilidades binomiales
(elipses) se calculan para la proporción de individuos jóvenes en la recolección (�) a partir de los datos
de recuperación de alas (W), y para las tasas de recolección específicas a una etapa (h) basándose
en anillamientos (R) y en la recuperación de aves muertas (X). Tales probabilidades se utilizan, a su
vez, para calcular las tasas de edad (A) que forman la base para el modelo de reproducción,
incluyendo términos dependientes de la densidad para el ánade sombrío (B) y el ánade real (M). Esto,
junto con una función de supervivencia fija, se utiliza despues para predecir el tamaño que tendrá la
población el próximo año. La forma integrada es idéntica a la no integrada, salvo que ahora la
población prevista forma parte de una probabilidad logarítmica normal multivariante, expresada como
el valor previsto del tamaño de la población observada. Cada modelo integrado incorpora cero o más
parámetros de sesgo (�).
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increment ct is generated using a N(0,") density. The
advantage of the random walk approach is that no
problem–specific restrictions regarding the form of
the proposal distribution need to be considered.
Proposal distributions for Metropolis–Hastings sam-
pling must be enveloping, such that q(x) m �(x)       .
Therefore, most proposal distributions must be cho-
sen manually for each variable in each problem. In
contrast, the random walk algorithm functions inde-
pendently of the form of the target �(�). The disad-
vantage of the random walk is that when steps are
relatively large (i.e., large "), proposed values may
frequently fall in the tails of the target distribution,
resulting in unacceptably low acceptance rates;
similarly, if increments are relatively small, accept-
ance rates may be very high, but the rate of mixing
(exploration of the support of �) will be correspond-
ingly low. Either extreme is inefficient, and therefore
undesirable. The adaptive random walk implemented
in PyMC addresses this inefficiency by adapting the
scale parameter of the proposal distribution ac-
cording to the recent acceptance probability for
each parameter during the simulation. Every k it-
erations (k = 100 is default), the variance is de-
creased for acceptance rates below 20%, and in-
creased for those above 50% (arbitrarily chosen),
thereby balancing proposal acceptance and mixing.
Adaptation occurs in the burn–in phase of the
algorithm, and continues until all parameter accept-
ance rates fall within the aforementioned interval.

The joint likelihood for the integrated model in-
cluded three components related to estimation and
prediction. Binomial likelihoods were calculated for
the adult and juvenile harvest rates, based on
banding and recovery data for these groups. Addi-
tionally, the probability of the proposed proportion
of young in the harvest � was calculated using wing
data in a binomial likelihood. As illustrated in (6), �
is also related to differential vulnerability and age
ratio. The final component is the likelihood of the
observed population given the predicted value of
the model. In each year, the likelihood of the ob-
served population in each area was calculated
based on a multivariate log–normal density centered
at the array of predicted values. The sum of loga-
rithms for these likelihoods were passed to the
Metropolis–Hastings sampler in PyMC after every
proposal of a new parameter; this joint log–likeli-
hood was used to either accept or reject the pro-
posed value. Because all parameters are assumed
to have equal priors, these cancel out from the ratio
of posterior densities used to calculate �.  The
proposal distributions q(�(t)

i*&) and q(&*�(t)
i)

]similarly drop out, since the probability of jumping
from �(t)

i to & is equal to the reverse jump, under the
random walk strategy.

Model scenarios

A suite of 10 distinct model scenarios was specified.
The first was a null model which separately esti-
mated parameters of the age–ratio reproduction func-
tion, then used this function to predict area–specific

where         (8)

Here, � are parameters fixed as constants for this
analysis (e.g., movement and survival rates), and
f(.) is the functional form specified under our process
model. Finally, we modeled observed abundance
Nt+1 via a multivariate log–normal distribution,
centered at the predicted abundance Ñt+1:

                (9)

where subscripts are suppressed for notational
simplicity. Previous approaches have involved in-
dependent estimation of �, then using these esti-
mates to predict future states Nt+1. Experience
with the black duck and other duck harvest models
has uncovered apparent, systematic over–predic-
tion from this approach. An integrated, hierarchi-
cal approach, outlined above, endeavors to
remediate this problem by establishing feedback
between prediction and estimation (fig. 6). In our
case, this would be achieved via adjustments of
the coefficients of the age ratio process models At
= (Nt, Mt). However, it is not known whether over–
prediction is due to the reproduction model, or the
survival process model (which, for the purposes of
this study, we have assumed has fixed coeffi-
cients) (Conroy et al., 2002). Indeed, it is possible
that neither component induces the bias, but rather,
some aspect of the sampling process itself is
flawed. Therefore, in addition to the (implicit) ad-
justment contained in the integrated age ratio
process model, we explicitly modeled systematic
biases in predicted survival and age ratio:

               (10)

where St, At are the values of survival and age ratio,
respectively, predicted from the model conditioned
on current states and data, and �s, �a are log–scale
biasing factors which are estimated; the values S't,
A't  are then used in prediction.

MCMC implementation

We implemented the black duck parameter estima-
tion and prediction models using Python (http://
python.org), an open source, object–oriented pro-
gramming language. Python is a modular develop-
ment environment, with a wide selection of third–
party scientific and numerical tools suitable for
biometric applications. We developed a Python
module, PyMC (http://pymc.sourceforge.net), that
implements an adaptive random walk Metropolis-
Hastings algorithm for MCMC sampling. At each
iteration of the algorithm, new parameter values
are proposed according to a random walk. The

http:// python.org
http:// python.org
http://pymc.sourceforge.net
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black duck populations for 11 years (1991–2001).
Four additional scenarios each used the integrated
approach described above to simultaneously esti-
mate reproduction model parameters and predict
subsequent population size. Each of the integrated
models estimated some combination of vital rate
bias parameters described in (10): Model 10 as-
sumed reproduction bias, but no survival bias; Model
01 assumed survival bias, but no reproduction bias;
Model 11 estimated both bias terms; while Model 00
estimated neither. These five models were replicated
under two alternative biological models for black
duck reproduction, one incorporating a Mallard com-
petitive effect, the other excluding this effect, for a
total of 10 scenarios.

The Metropolis–Hastings sampler in PyMC pro-
duced predictions and estimates for the model set.
A total of 100,000 sampling iterations for each
model were executed, with the first 50,000 con-
servatively discarded as "burn–in" samples, as-
suming that convergence had been achieved by
that stage. Manual inspection of sample traces
suggested convergence and adequate mixing of
each chain. We compared reproduction model pa-
rameter estimates � among model scenarios, as
well as bias factor estimates, where relevant, using
95% Bayesian credible intervals derived from the
posterior distribution of the final 50,000 samples.
We also calculated the log–bias of each population
i = 1,2,3 in each of t = 1,...,10 years:

               (11)

Model selection was performed using Akaike’s
Information Criterion (Burnham & Anderson, 2002;
Akaike, 1973, AIC), calculated for each model at
each iteration. Burnham & Anderson (2002) illus-
trate the equivalence of AIC model weights and
Bayesian posterior model weights, provided that
model priors are equivalent (as we have specified).
Use of AIC greatly simplifies model selection in a
Bayesian framework relative to other approaches,
such as reversible jump MCMC (King & Brooks,
2002). The lack of random effects and the relatively
small set of models in this study eliminated the
need for procedures that are far more complex to
implement. The calculation of AIC at each MCMC
iteration yielded a distribution of values, rather than
the typical scalar value, which explicitly character-
izes parametric uncertainty and its interaction with
model selection uncertainty.

Results

Figure 7 illustrates the systematic over–prediction
resulting from separately estimating vital rates,
then using those rates in a predictive model. This
effect is most severe in the Western and Central
populations; moreover, over–prediction is higher
in earlier years relative to later. Predictions de-
rived from an integrated framework (fig. 8) are
only subtly less positively biased overall. The ad-

dition of a reproduction bias term (fig. 9) or both
bias terms (fig. 11) produces a more dramatic
reduction in prediction bias, particularly earlier in
the time series. Here, the relative over–prediction
of the West and Central populations is balanced
by under–prediction in the East to achieve relative
unbiasedness overall. The addition of the survival
bias parameter did not appreciably improve pre-
diction (fig. 10). Calculated AIC–based model
weights reinforce the influence of reproduction
bias on prediction, as these models account for
over 90% of total weight (table 1). Much biological
uncertainty also remains in the form of the repro-
duction function, with neither model dominating
the other consistently, with respect to AIC weight.

Estimates of reproduction and survival rate bias
factors are summarized in table 2. A positive re-
production bias was estimated when survival bias
was assumed absent, under Model 10, while a
negative survival bias is discovered in the ab-
sence of reproduction bias using Model 01 (though
95% credible intervals include zero). Specifying
dual bias results in a positive reproduction bias
under the no–competition reproduction model
(Model 11), virtually no bias when competition is
assumed (Model 11c), and a positive survival bias
estimate in either case. Complementary to these
estimates are those of the reproduction model
parameters (table 3). The age ratio reproduction
model parameter estimates are strikingly similar
among statistical bias models, and between inte-
grated and non–integrated models. All have ap-
proximately equivalent intercepts and a pattern of
increasing negative density dependence west to
east. Stronger differences are evident between
biological models, where mallard competition ef-
fects are balanced by generally larger intercept
values relative to those of the non–competitive
models.

Discussion

The pattern of over–prediction that pervades black
duck population models may well be independent
of the quality of the model parameter estimators, or
the data used by them. A potential explanation for
these systematic and unidentified biases in ob-
served population size is a flawed breeding survey
(or wintering survey, depending on which model is
employed (Conroy et al., 2002)). Some have sug-
gested that the current survey design is inadequate
for reliably estimating the breeding population
(Bordage, 2000); a non–standard survey over the
past decade may in fact be responsible for the
particularly acute over–prediction in the early part
of the time series (D. Bordage, pers. comm.). This
type of bias cannot be accounted for by our inte-
grated models.

Assuming, however, that an important compo-
nent of the existing bias is due to the models or data
for estimating vital rates, an integrated framework
such as that presented here may prove beneficial.
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Model parameter estimates that were informed by
the consequent population prediction resulted in
less biased population estimates relative to their
non–integrated counterparts, particularly when re-
production bias parameters were specified. Re-
maining bias showed spatial and temporal patterns
of heterogeneity. In particular, estimates were more
positively biased in the first half of the time series;
where negative biases occurred, they tended to be
in the second half. Again, this trend may be due to
inconsistencies in survey methodologies over this
time period. Spatially, more over–prediction oc-
curred in the Western and Central populations,
balanced by relative unbiasedness or even under–
prediction in the East. This may also be generally
related to survey problems in these areas, because
the West and Central regions are characterized by
large, unsurveyed areas in Ontario and Quebec, in

contrast to the relatively smaller, well–surveyed
Atlantic provinces in the East. The quality of predic-
tions among integrated models were not obviously
different according to which vital rate bias param-
eters were estimated.

Each of the integrated models not only represents
a different explanation for the source of over–predic-
tion, but also for the factors influencing production in
general. Having quantified structural and biological
uncertainty, future development could link weighted
predictions across models to a dynamic decision
optimization procedure, thereby providing a com-
plete decision analysis system to inform manage-
ment. Though not currently incorporated into the
modeling framework presented here, methods of
dynamic optimization exist which complement the
integrated, stochastic simulation approach outlined
thus far (e.g. reinforcement learning).

Figs. 7, 8. Bias in population predictions from non–integrated model (7) and from integrated model
with no bias factors (Model 00) (8), relative to actual population estimates for production with
mallard competition (A) and without (B) over 11 years (1991–2001). Plots indicate differences
log(predicted) – log(observed) for Western (dashed line), Central (dot–dashed) and Eastern (solid)
populations of black ducks.

Figs. 7, 8. Sesgos en las predicciones de población a partir del modelo no integrado (7) y a partir del
modelo integrado sin factores de sesgo (modelo 00), con relación a las estimaciones de población
actuales para la producción con competencia de ánades reales (A) y sin competencia (B) a lo largo de
11 años (1991–2001). Las representaciones gráficas indican diferencias logarítmicas (previstas) –
logarítmicas (observadas) para las poblaciones de ánades sombríos del estrato geográfico occidental
(línea discontinua), central (línea discontinua punteada) y oriental (línea continua).

A B

1.0

0.5

0.0

–0.5

2 4 6 8 10 2 4 6 8 10
Time Time

2 4 6 8 10 2 4 6 8 10
Time Time

1.0

0.5

0.0

–0.5

1.0

0.5

0.0

–0.5

1.0

0.5

0.0

–0.5lo
g

 (
p

re
d

) 
– 

lo
g

 (
o

b
s)

lo
g

 (
p

re
d

) 
– 

lo
g

 (
o

b
s)



Animal Biodiversity and Conservation 27.1 (2004) 279

Figs. 9–11. Bias in population predictions from integrated model with reproduction bias (Model 10) (9),
from integrated model with survival bias (Model 01) (10), and from integrated model with both
reproduction and survival bias (Model 11) (11), relative to actual population estimates for production
with mallard competition (A) and without (B) over 11 years (1991–2001). Plots indicate differences log
(predicted) – log (observed) for Western (dashed line), Central (dot–dashed) and Eastern (solid)
populations of black ducks.

Figs. 9–11. Sesgos en las predicciones de población a partir del modelo integrado con sesgos de
reproducción (Modelo 10) (9), a partir del modelo integrado con sesgos de supervivencia (Modelo 01)
(10) y a partir del modelo integrado con sesgos de reproducción y sesgos de supervivencia (Modelo
11) (11), con relación a las estimaciones de población actuales para la producción con competencia de
ánades reales (A) y sin competencia (B) a lo largo de 11 años (1991–2001). Las representaciones
gráficas indican diferencias logarítmicas (previstas) – logarítmicas (observadas) para las poblaciones
de ánades sombríos del estrato geográfico occidental (línea discontinua), central (línea discontínua
punteada) y oriental (línea continua).

A B

1.0

0.5

0.0

–0.5lo
g

 (
p

re
d

) 
– 

lo
g

 (
o

b
s)

1.0

0.5

0.0

–0.5lo
g

 (
p

re
d

) 
– 

lo
g

 (
o

b
s)

1.0

0.5

0.0

–0.5lo
g

 (
p

re
d

) 
– 

lo
g

 (
o

b
s) 1.0

0.5

0.0

–0.5

1.0

0.5

0.0

–0.5

1.0

0.5

0.0

–0.5

2 4 6 8 10 2 4 6 8 10
Time Time

2 4 6 8 10 2 4 6 8 10
Time Time

2 4 6 8 10 2 4 6 8 10
Time Time



280 Fonnesbeck & Conroy

Table 3. Production model parameter estimates for each model scenario (95% Bayesian credible
intervals in parentheses). Spatially–explicit parameters listed on multiple lines for each model, where
appropriate: West (top), Central (middle), East (bottom).

Tabla 3. Estimaciones de parámetros del modelo de producción para cada modelo (entre paréntesis
los intervalos bayesianos creíbles al 95%). Los parámetros espacialmente explícitos se detallan en
líneas múltiples para cada modelo: estrato geográfico occidental (línea superior),  estrato geográfico
central (linea media), estrato geográfico oriental (línea inferior).

Model               Intercept                       Black Duck effect              Mallard effect

00 1.872 (1.402,2.316) –0.501 (–0.724,–0.256) 0

 1.473 (1.060,1.870) –0.617 (–0.957,–0.275)  

 1.627 (1.376,1.871) –0.877 (–0.993,–0.759)  

01 1.843 (1.379,2.299) –0.478 (–0.713,–0.238) 0

 1.478 (1.050,1.888) –0.608 (–0.952,–0.248)  

 1.640 (1.395,1.886) –0.879 (–0.987,–0.766)  

 10 1.914 (1.367,2.462) –0.494 (–0.794,–0.185) 0

 1.284 (0.819,1.828) –0.700 (–1.074,–0.360)  

 1.893 (1.679,2.095) –0.928 (–1.022,–0.837)  

 11 1.843 (1.272,2.379) –0.457 (–0.752,–0.142) 0

 1.269 (0.761,1.775) –0.671 (–1.032,–0.294)  

 1.805 (1.545,2.056) –0.883 (–0.985,–0.763)  

Null 1.495 (0.955,2.019) –0.255 (–0.531, 0.038) 0

 1.655 (1.220,2.058) –0.738 (–1.070,–0.386)  

 1.679 (1.421,1.938) –0.902 (–1.013,–0.792)

 

Table 1. Mean AIC values, along with AIC
values and associated model weights of 10
competing models for black duck population
dynamics, based on the final 50,000 of
100,000 total MCMC iterations.

Tabla 1. Valores medios de AIC junto con
valores de AIC y pesos de modelos asociados
de 10 modelos alternativos para la dinámica
poblacional del ánade sombrío, a partir de las
50.000 de un total de 100.000 iteraciones
MCMC finales.

Model      AIC       AIC Weight 

10c 25827.94 0.00 0.519

10 25828.59 0.65 0.375

11 25831.61 3.67 0.082

00 25835.88 7.94 0.010

00c 25836.61 8.67 0.007

01c 25838.70 10.76 0.002

01 25838.77 10.83 0.002

11c 25839.86 11.92 0.001

Null 25877.29 49.35 0.000

Nullc 25884.37 56.43 0.000

 

Table 2. Production and survival bias parameter
estimates (log scale) for each of eight integrated
model scenario combinations (95% Bayesian
credible intervals in parentheses). Zero values
indicate no estimate for given model scenario.

Tabla 2. Estimaciones de parámetros de
producción y sesgos de supervivencia (escala
logarítmica) para cada una de las ocho
combinaciones de modelos integrados (ente
paréntesis los intervalos bayesianos creíbles al
95%). Los valores cero no indican ninguna
estimación para el modelo dado.

Model   Production Bias        Survival Bias  

00,00c 0 0

10 0.701(0.641, 0.762) 0

10c 0.696(0.638, 0.750) 0

01 0 –0.085(–0.478, 0.250)

01c 0 –0.121(–0.473, 0.186)

11 0.679(0.573, 0.754) 0.051(–0.128, 0.251)

11c –0.100(–0.211, 0.027) 0.241(–0.298, 0.760)
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Though incomplete, we have presented an
integrated framework for modeling population
dynamics. The feedback between predictions and
parameter estimates achieved by sampling from
a full joint posterior via Markov chain Monte
Carlo results in vital rate estimates that are
better predictors of population change. This ho-
listic approach is a more efficient use of all
avai lable information, relat ive to standard
modeling procedures that estimate parameters
and project population states in serial. The avail-
ability of complementary procedures for dynamic
decision analysis hold promise for the develop-
ment of a truly integrated natural resource deci-
sion–making tool.
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 1.482 (1.260,1.704)   

10c 2.820 (2.452,3.176) –0.837 (–0.935,–0.721) –0.283 (–0.503, –0.036)

 1.541 (1.338,1.748)   

 1.693 (1.466,1.911)   

11c 2.757 (2.358,3.141) –0.800 (–0.898,–0.701) –0.275 (–0.519, –0.025)

 1.716 (1.477,1.947)   

 1.523 (1.292,1.759)   

Nullc 2.729 (2.325,3.116) –0.805 (–0.904,–0.707) –0.220 (–0.503,0.065)

1.736 (1.511,1.969)   

 1.507 (1.277,1.731)

  

Table 3. (Cont.)


